Skip to main content
Log in

Enhancement of the solubility of recombinant proteins by fusion with a short-disordered peptide

  • Systems and Synthetic Microbiology and Bioinformatics
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

In protein biotechnology, large soluble fusion partners are widely utilized for increased yield and solubility of recombinant proteins. However, the production of additional large fusion partners poses an additional burden to the host, leading to a decreased protein yield. In this study, we identified two highly disordered short peptides that were able to increase the solubility of an artificially engineered aggregation-prone protein, GFP-GFIL4, from 0.6% to 61% (D3-DP00592) and 46% (D4-DP01038) selected from DisProt database. For further confirmation, the peptides were applied to two insoluble E. coli proteins (YagA and YdiU). The peptides also enhanced solubility from 52% to 90% (YagA) and from 27% to 93% (YdiU). Their ability to solubilize recombinant proteins was comparable with strong solubilizing tags, maltose-binding protein (40 kDa) and TrxA (12 kDa), but much smaller (< 7 kDa) in size. For practical application, the two peptides were fused with a restriction enzyme, I-SceI, and they increased I-SceI solubility from 24% up to 75%. The highly disordered peptides did not affect the activity of I-SceI while I-SceI fused with MBP or TrxA displayed no restriction activity. Despite the small size, the highly disordered peptides were able to solubilize recombinant proteins as efficiently as conventional fusion tags and did not interfere with the function of recombinant proteins. Consequently, the identified two highly disordered peptides would have practical utility in protein biotechnology and industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agaton, C., Galli, J., Höidén Guthenberg, I., Janzon, L., Hansson, M., Asplund, A., Brundell, E., Lindberg, S., Ruthberg, I., Wester, K., et al. 2003. Affinity proteomics for systematic protein profiling of chromosome 21 gene products in human tissues. Mol. Cell. Proteomics 2, 405–414.

    Article  CAS  PubMed  Google Scholar 

  • Arendt, P., Pollier, J., Callewaert, N., and Goossens, A. 2016. Synthetic biology for production of natural and new-to-nature terpenoids in photosynthetic organisms. Plant J. 87, 16–37.

    Article  CAS  PubMed  Google Scholar 

  • Bellaiche, Y., Mogila, V., and Perrimon, N. 1999. I-SceI endonuclease, a new tool for studying DNA double-strand break repair mechanisms in Drosophila. Genetics 152, 1037–1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunelle, E., Le, A.M., Huynh, C., Wingfield, K., Halámková, L., Agudelo, J., and Halámek, J. 2017. Coomassie Brilliant Blue G-250 dye: an application for forensic fingerprint analysis. Anal. Chem. 89, 4314–4319.

    Article  CAS  PubMed  Google Scholar 

  • Büssow, K., Scheich, C., Sievert, V., Harttig, U., Schultz, J., Simon, B., Bork, P., Lehrach, H., and Heinemann, U. 2005. Structural genomics of human proteins-target selection and generation of a public catalogue of expression clones. Microb. Cell Fact. 4, 21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chan, W.C., Liang, P.H., Shih, Y.P., Yang, U.C., Lin, W., and Hsu, C.N. 2010. Learning to predict expression efficacy of vectors in recombinant protein production. BMC Bioinformatics 11, S21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conchillo-Sole, O., de Groot, N.S., Aviles, F.X., Vendrell, J., Daura, X., and Ventura, S. 2007. AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics 8, 65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Costa, S., Almeida, A., Castro, A., and Domingues, L. 2014. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Front. Microbiol. 5, 63.

    PubMed  PubMed Central  Google Scholar 

  • de Moreno, M.R., Smith, J.F., and Smith, R.V. 1986. Mechanism studies of coomassie blue and silver staining of proteins. J. Pharm. Sci. 75, 907–911.

    Article  CAS  PubMed  Google Scholar 

  • de Ruijter, J.C., Koskela, E.V., Nandania, J., Frey, A.D., and Velagapudi, V. 2018. Understanding the metabolic burden of recombinant antibody production in Saccharomyces cerevisiae using a quantitative metabolomics approach. Yeast 35, 331–341.

    Article  CAS  PubMed  Google Scholar 

  • Delaney, J.S. 2004. ESOL: estimating aqueous solubility directly from molecular structure. J. Chem. Inf. Comput. Sci. 44, 1000–1005.

    Article  CAS  PubMed  Google Scholar 

  • Demain, A.L. and Vaishnav, P. 2009. Production of recombinant proteins by microbes and higher organisms. Biotechnol. Adv. 27, 297–306.

    Article  CAS  PubMed  Google Scholar 

  • Diaz, A.A., Tomba, E., Lennarson, R., Richard, R., Bagajewicz, M.J., and Harrison, R.G. 2010. Prediction of protein solubility in Escherichia coli using logistic regression. Biotechnol. Bioeng. 105, 374–383.

    Article  CAS  PubMed  Google Scholar 

  • Esposito, D. and Chatterjee, D.K. 2006. Enhancement of soluble protein expression through the use of fusion tags. Curr. Opin. Biotech. 17, 353–358.

    Article  CAS  PubMed  Google Scholar 

  • Fang, Y. and Fang, J. 2013. Discrimination of soluble and aggregation-prone proteins based on sequence information. Mol. BioSyst. 9, 806–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, H., Li, D., Kang, J., Jiang, P., Sun, J., and Zhang, D. 2018. Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12. Nat. Commun. 9, 4917.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Graslund, S., Sagemark, J., Berglund, H., Dahlgren, L.G., Flores, A., Hammarström, M., Johansson, I., Kotenyova, T., Nilsson, M., Nordlund, P., et al. 2008. The use of systematic N- and C-terminal deletions to promote production and structural studies of recombinant proteins. Protein Expr. Purif. 58, 210–221.

    Article  PubMed  CAS  Google Scholar 

  • Grote, A., Hiller, K., Scheer, M., Münch, R., Nortemann, B., Hempel, D.C., and Jahn, D. 2005. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 33, W526–W531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, X., Wang, X., and Zhou, K. 2019. Develop machine learning-based regression predictive models for engineering protein solubility. Bioinformatics 35, 4640–4646.

    Article  CAS  PubMed  Google Scholar 

  • Hou, Q., Kwasigroch, J.M., Rooman, M., and Pucci, F. 2020. SOLart: a structure-based method to predict protein solubility and aggregation. Bioinformatics 36, 1445–1452.

    CAS  PubMed  Google Scholar 

  • Kawashima, S. and Kanehisa, M. 2000. AAindex: amino acid index database. Nucleic Acids Res. 28, 374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khurana, S., Rawi, R., Kunji, K., Chuang, G.Y., Bensmail, H., and Mall, R. 2018. DeepSol: a deep learning framework for sequence-based protein solubility prediction. Bioinformatics 34, 2605–2613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langlais, C., Guilleaume, B., Wermke, N., Scheuermann, T., Ebert, L., LaBaer, J., and Korn, B. 2007. A systematic approach for testing expression of human full-length proteins in cell-free expression systems. BMC Biotechnol. 7, 64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • LaVallie, E.R., Lu, Z.J., Diblasio-Smith, E.A., Collins-Racie, L.A., and McCoy, J.M. 2000. Thioredoxin as a fusion partner for production of soluble recombinant proteins in Escherichia coli. Method Enzymol. 326, 322–340.

    Article  CAS  Google Scholar 

  • Lee, H.M., Ren, J., Tran, K.M., Jeon, B.M., Park, W.U., Kim, H., Lee, K.E., Oh, Y., Choi, M., Kim, D.S., et al. 2021. Identification of efficient prokaryotic cell-penetrating peptides with applications in bacterial biotechnology. Commun. Biol. 4, 205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lempp, M., Farke, N., Kuntz, M., Freibert, S. A., Lill, R., and Link, H. 2019. Systematic identification of metabolites controlling gene expression in E. coli. Nat. Commun. 10, 4463. Li, M.J. and Borodina, I. 2015. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae. FEMS Yeast Res. 15, 1–12.

    Google Scholar 

  • Li, Z. and Rinas, U. 2021. Recombinant protein production-associated metabolic burden reflects anabolic constraints and reveals similarities to a carbon overfeeding response. Biotechnol. Bioeng. 118, 94–105.

    Article  PubMed  CAS  Google Scholar 

  • Morales-Alvarez, E.D., Rivera-Hoyos, C.M., Baena-Moncada, A.M., Landázuri, P., Poutou-Piñales, R.A., Sáenz-Suárez, H., Barrera, L.A., and Echeverri-Peña, O.Y. 2013. Low-scale expression and purification of an active putative iduronate 2-sulfate sulfatase-Like enzyme from Escherichia coli K12. J. Microbiol. 51, 213–221.

    Article  CAS  PubMed  Google Scholar 

  • Nallamsetty, S. and Waugh, D.S. 2007. Mutations that alter the equilibrium between open and closed conformations of Escherichia coli maltose-binding protein impede its ability to enhance the solubility of passenger proteins. Biochem. Biophys. Res. Commun. 364, 639–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niwa, T., Ying, B.W., Saito, K., Jin, W., Takada, S., Ueda, T., and Taguchi, H. 2009. Bimodal protein solubility distribution revealed by an aggregation analysis of the entire ensemble of Escherichia coli proteins. Proc. Natl. Acad. Sci. USA 106, 4201–4206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouedraogo, J.P., Arentshorst, M., Nikolaev, I., Barends, S., and Ram, A.F.J. 2016. I-SceI enzyme mediated integration (SEMI) for fast and efficient gene targeting in Trichoderma reesei. J. Biotechnol. 222, 25–28.

    Article  CAS  PubMed  Google Scholar 

  • Piovesan, D., Tabaro, F., Mičetić, I., Necci, M., Quaglia, F., Oldfield, C.J., Aspromonte, M.C., Davey, N.E., Davidovic, R., Dosztanyi, Z., et al. 2017. DisProt 7.0: a major update of the database of disordered proteins. Nucleic Acids Res. 45, D219–D227.

    Article  CAS  PubMed  Google Scholar 

  • Raran-Kurussi, S., Keefe, K., and Waugh, D.S. 2015. Positional effects of fusion partners on the yield and solubility of MBP fusion proteins. Protein Expr. Purif. 110, 159–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitoh, H., Uwada, J., and Azusa, K. 2009. Strategies for the expression of SUMO-modified target proteins in Escherichia coli. In Ulrich, H.D. (eds), SUMO Protocols, Methods in Molecular Biology, vol. 497. Humana Press, Totowa, New Jersey, USA.

    Google Scholar 

  • Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sickmeier, M., Hamilton, J.A., LeGall, T., Vacic, V., Cortese, M.S., Tantos, A., Szabo, B., Tompa, P., Chen, J., Uversky, V.N., et al. 2007. DisProt: the database of disordered proteins. Nucleic Acids Res. 35, D786–D793.

    Article  CAS  PubMed  Google Scholar 

  • Siegl, T., Petzke, L., Welle, E., and Luzhetskyy, A. 2010. I-SceI endonuclease: a new tool for DNA repair studies and genetic manipulations in streptomyces. Appl. Microbiol. Biotechnol. 87, 1525–1532.

    Article  CAS  PubMed  Google Scholar 

  • Singh, V., Chaudhary, D.K., Mani, I., Jain, R., and Mishra, B.N. 2013. Development of diagnostic and vaccine markers through cloning, expression, and regulation of putative virulence-protein-encoding genes of Aeromonas hydrophila. J. Microbiol. 51, 275–282.

    Article  CAS  PubMed  Google Scholar 

  • Sung, M., Yoo, S.M., Jun, R., Lee, J.E., Lee, S.Y., and Na, D. 2016. Optimization of phage λ promoter strength for synthetic small regulatory RNA-based metabolic engineering. Biotechnol. Bioproc. E. 21, 483–490.

    Article  CAS  Google Scholar 

  • Tan, J., Sastry, A.V., Fremming, K.S., Bjørn, S.P., Hoffmeyer, A., Seo, S., Voldborg, B.G., and Palsson, B.O. 2020. Independent component analysis of E. coli’s transcriptome reveals the cellular processes that respond to heterologous gene expression. Metab. Eng. 61, 360–368.

    Article  CAS  PubMed  Google Scholar 

  • Tischer, B.K., von Einem, J., Kaufer, B., and Osterrieder, N. 2006. Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques 40, 191–197.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Zhou, B., Hu, W., Zhao, Q., and Lin, Z. 2015. Formation of active inclusion bodies induced by hydrophobic self-assembling peptide GFIL8. Microb. Cell Fact. 14, 88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2018R1A5A1025077). This research was also supported by the Chung-Ang University Research Grants in 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dokyun Na.

Additional information

Conflict of Interest

The authors declare no conflicts of interest to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Hwang, S., Shen, J. et al. Enhancement of the solubility of recombinant proteins by fusion with a short-disordered peptide. J Microbiol. 60, 960–967 (2022). https://doi.org/10.1007/s12275-022-2122-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-022-2122-z

Keywords

Navigation