Skip to main content
Log in

Potent antibacterial and antibiofilm activities of TICbf-14, a peptide with increased stability against trypsin

  • Microbial Pathogenesis and Host-Microbe Interaction
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The poor stability of peptides against trypsin largely limits their development as potential antibacterial agents. Here, to obtain a peptide with increased trypsin stability and potent antibacterial activity, TICbf-14 derived from the cationic peptide Cbf-14 was designed by the addition of disulfide-bridged hendecapeptide (CWTKSIPPKPC) loop. Subsequently, the trypsin stability and antimicrobial and antibiofilm activities of this peptide were evaluated. The possible mechanisms underlying its mode of action were also clarified. The results showed that TICbf-14 exhibited elevated trypsin inhibitory activity and effectively mitigated lung histopathological damage in bacteria-infected mice by reducing the bacterial counts, further inhibiting the systemic dissemination of bacteria and host inflammation. Additionally, TICbf-14 significantly repressed bacterial swimming motility and notably inhibited biofilm formation. Considering the mode of action, we observed that TICbf-14 exhibited a potent membrane-disruptive mechanism, which was attributable to its destructive effect on ionic bridges between divalent cations and LPS of the bacterial membrane. Overall, TICbf-14, a bifunctional peptide with both antimicrobial and trypsin inhibitory activity, is highly likely to become an ideal candidate for drug development against bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alakomi, H.L., Paananen, A., Suihko, M.L., Helander, I.M., and Saarela, M. 2006. Weakening effect of cell permeabilizers on Gram-negative bacteria causing biodeterioration. Appl. Environ. Microbiol. 72, 4695–4703.

    Article  CAS  Google Scholar 

  • Bechinger, B. and Gorr, S.U. 2017. Antimicrobial peptides: mechanisms of action and resistance. J. Dent. Res. 96, 254–260.

    Article  CAS  Google Scholar 

  • Bessa, L.J., Eaton, P., Dematei, A., Plácido, A., Vale, N., Gomes, P., Delerue-Matos, C., Sa Leite, J.R., and Gameiro, P. 2018. Synergistic and antibiofilm properties of ocellatin peptides against multidrug-resistant Pseudomonas aeruginosa. Future Microbiol. 13, 151–163.

    Article  CAS  Google Scholar 

  • Bhunia, A., Mohanram, H., Domadia, P.N., Torres, J., and Bhattacharjya, S. 2009. Designed β-boomerang antiendotoxic and antimicrobial peptides: structures and activities in lipopolysaccharide. J. Biol. Chem. 284, 21991–22004.

    Article  CAS  Google Scholar 

  • Cerqueira, D.M., Gomes, M.T.R., Silva, A.L.N., Rungue, M., Assis, N.R.G., Guimarães, E.S., Morais, S.B., Broz, P., Zamboni, D.S., and Oliveira, S.C. 2018. Guanylate-binding protein 5 licenses caspase-11 for Gasdermin-D mediated host resistance to Brucella abortus infection. PLoS Pathog. 14, e1007519.

    Article  Google Scholar 

  • de Breij, A., Riool, M., Cordfunke, R.A., Malanovic, N., de Boer, L., Koning, R.I., Ravensbergen, E., Franken, M., van der Heijde, T., Boekema, B.K., et al. 2018. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci. Transl. Med. 10, eaan4044.

    Article  Google Scholar 

  • Domhan, C., Uhl, P., Kleist, C., Zimmermann, S., Umstätter, F., Leotta, K., Mier, W., and Wink, M. 2019. Replacement of L-amino acids by D-amino acids in the antimicrobial peptide ranalexin and its consequences for antimicrobial activity and biodistribution. Molecules 24, 2987.

    Article  CAS  Google Scholar 

  • Dong, W., Mao, X., Guan, Y., Kang, Y., and Shang, D. 2017. Antimicrobial and anti-inflammatory activities of three chensinin-1 peptides containing mutation of glycine and histidine residues. Sci. Rep. 7, 40228.

    Article  CAS  Google Scholar 

  • Edwards-Gayle, C.J.C., Barrett, G., Roy, S., Castelletto, V., Seitsonen, J., Ruokolainen, J., and Hamley, I.W. 2020. Selective antibacterial activity and lipid membrane interactions of arginine-rich amphiphilic peptides. ACS Appl. Bio Mater. 3, 1165–1175.

    Article  CAS  Google Scholar 

  • Farha, M.A., Verschoor, C.P., Bowdish, D., and Brown, E.D. 2013. Collapsing the proton motive force to identify synergistic combinations against Staphylococcus aureus. Chem. Biol. 20, 1168–1178.

    Article  CAS  Google Scholar 

  • Indarte, M., Lazza, C.M., Assis, D., Caffini, N.O., Juliano, M.A., Avilés, F.X., Daura, X., López, L.M.I., and Trejo, S.A. 2017. A Bowman-Birk protease inhibitor purified, cloned, sequenced and characterized from the seeds of Maclura pomifera (Raf.) Schneid. Planta 245, 343–353.

    Article  CAS  Google Scholar 

  • Juliano, S.A., Pierce, S., deMayo, J.A., Balunas, M.J., and Angeles-Boza, A.M. 2017. Exploration of the innate immune system of Styela clava: Zn2+ binding enhances the antimicrobial activity of the tunicate peptide Clavanin A. Biochemistry 56, 1403–1414.

    Article  CAS  Google Scholar 

  • Karstad, R., Isaksen, G., Wynendaele, E., Guttormsen, Y., De Spiegeleer, B., Brandsdal, B.O., Svendsen, J.S., and Svenson, J. 2012. Targeting the S1 and S3 subsite of trypsin with unnatural cationic amino acids generates antimicrobial peptides with potential for oral administration. J. Med. Chem. 55, 6294–6305.

    Article  CAS  Google Scholar 

  • Kerenga, B.K., McKenna, J.A., Harvey, P.J., Quimbar, P., Garcia-Ceron, D., Lay, F.T., Phan, T.K., Veneer, P.K., Vasa, S., Parisi, K., et al. 2019. Salt-tolerant antifungal and antibacterial activities of the corn defensin ZmD32. Front. Microbiol. 10, 795.

    Article  Google Scholar 

  • Lazzaro, B.P., Zasloff, M., and Rolff, J. 2020. Antimicrobial peptides: application informed by evolution. Science 368, eaau5480.

    Article  CAS  Google Scholar 

  • Li, J., Cheng, Z., Xu, X., Wang, J., Yu, H., Lai, R., and Gong, W. 2007. Trypsin inhibitory loop is an excellent lead structure to design serine protease inhibitors and antimicrobial peptides. FASEB J. 21, 2466–2473.

    Article  CAS  Google Scholar 

  • Lyu, Y., Chen, T., Shang, L., Yang, Y., Li, Z., Zhu, J., and Shan, A. 2019. Design of Trp-rich dodecapeptides with broad-spectrum antimicrobial potency and membrane-disruptive mechanism. J. Med. Chem. 62, 6941–6957.

    Article  CAS  Google Scholar 

  • Ma, B., Fang, C., Lu, L., Wang, M., Xue, X., Zhou, Y., Li, M., Hu, Y., Luo, X., and Hou, Z. 2019. The antimicrobial peptide thanatin disrupts the bacterial outer membrane and inactivates the NDM-1 metallo-β-lactamase. Nat. Commun. 10, 3517.

    Article  Google Scholar 

  • Ma, L., Wang, Y., Wang, M., Tian, Y., Kang, W., Liu, H., Wang, H., Dou, J., and Zhou, C. 2016. Effective antimicrobial activity of Cbf-14, derived from a cathelin-like domain, against penicillin-resistant bacteria. Biomaterials 87, 32–45.

    Article  CAS  Google Scholar 

  • Ma, L., Wei, S., Ye, X., Xu, P., Chen, H., Liu, Z., and Zhou, C. 2020a. Antifungal activity of peptide MSI-1 against Cryptococcus neoformans infection in vitro and in murine cryptococcal meningoencephalitis. Peptides 130, 170334.

    Article  CAS  Google Scholar 

  • Ma, L., Xie, X., Liu, H., Huang, Y., Wu, H., Jiang, M., Xu, P., Ye, X., and Zhou, C. 2020b. Potent antibacterial activity of MSI-1 derived from the magainin 2 peptide against drug-resistant bacteria. Theranostics 10, 1373–1390.

    Article  CAS  Google Scholar 

  • Ma, L., Ye, X., Sun, P., Xu, P., Wang, L., Liu, Z., Huang, X., Bai, Z., and Zhou, C. 2020c. Antimicrobial and antibiofilm activity of the EeCentrocin 1 derived peptide EC1–17KV via membrane disruption. EBioMedicine 55, 102775.

    Article  Google Scholar 

  • Malik, E., Dennison, S.R., Harris, F., and Phoenix, D.A. 2016. pH dependent antimicrobial peptides and proteins, their mechanisms of action and potential as therapeutic agents. Pharmaceuticals 9, 67.

    Article  Google Scholar 

  • Miao, Y., Chen, G., Xi, X., Ma, C., Wang, L., Burrows, J.F., Duan, J., Zhou, M., and Chen, T. 2019. Discovery and rational design of a novel Bowman-Birk related protease inhibitor. Biomolecules 9, 280.

    Article  Google Scholar 

  • Pariani, S., Contreras, M., Rossi, F.R., Sander, V., Corigliano, M.G., Simón, F., Busi, M.V., Gomez-Casati, D.F., Pieckenstain, F.L., Duschak, V.G., et al. 2016. Characterization of a novel Kazal-type serine proteinase inhibitor of Arabidopsis thaliana. Biochimie 123, 85–94.

    Article  CAS  Google Scholar 

  • Persson, L.J.P., Aanerud, M., Hardie, J.A., Miodini Nilsen, R., Bakke, P.S., Eagan, T.M., and Hiemstra, P.S. 2017. Antimicrobial peptide levels are linked to airway inflammation, bacterial colonisation and exacerbations in chronic obstructive pulmonary disease. Eur. Respir. J. 49, 1600328.

    Article  Google Scholar 

  • Rathinam, V.A.K., Vanaja, S.K., Waggoner, L., Sokolovska, A., Becker, C., Stuart, L.M., Leong, J.M., and Fitzgerald, K.A. 2012. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by Gram-negative bacteria. Cell 150, 606–619.

    Article  CAS  Google Scholar 

  • Siddiqui, I., Husain, Q., and Azam, A. 2020. Exploring the antioxidant effects of peptides from almond proteins using PAni-Ag-GONC conjugated trypsin by improving enzyme stability & applications. Int. J. Biol. Macromol. 158, 150–158.

    Article  CAS  Google Scholar 

  • Souza, P.F.N., Marques, L.S.M., Oliveira, J.T.A., Lima, P.G., Dias, L.P., Neto, N.A.S., Lopes, F.E.S., Sousa, J.S., Silva, A.F.B., Caneiro, R.F., et al. 2020. Synthetic antimicrobial peptides: from choice of the best sequences to action mechanisms. Biochimie 175, 132–145.

    Article  CAS  Google Scholar 

  • Wadhwani, P., Heidenreich, N., Podeyn, B., Bürck, J., and Ulrich, A.S. 2017. Antibiotic gold: tethering of antimicrobial peptides to gold nanoparticles maintains conformational flexibility of peptides and improves trypsin susceptibility. Biomater. Sci. 5, 817–827.

    Article  CAS  Google Scholar 

  • Wang, M., Lin, J., Sun, Q., Zheng, K., Ma, Y., and Wang, J. 2019. Design, expression, and characterization of a novel cecropin A-derived peptide with high antibacterial activity. Appl. Microbiol. Biotechnol. 103, 1765–1775.

    Article  CAS  Google Scholar 

  • Yu, H., Wang, C., Feng, L., Cai, S., Liu, X., Qiao, X., Shi, N., Wang, H., and Wang, Y. 2017. Cathelicidin-trypsin inhibitor loop conjugate represents a promising antibiotic candidate with protease stability. Sci. Rep. 7, 2600.

    Article  Google Scholar 

  • Yu, H., Wang, Y., Zeng, X., Cai, S., Wang, G., Liu, L., Huang, S., Li, N., Liu, H., Ding, X., et al. 2020. Therapeutic administration of the recombinant antimicrobial peptide microcin J25 effectively enhances host defenses against gut inflammation and epithelial barrier injury induced by enterotoxigenic Escherichia coli infection. FASEB J. 34, 1018–1037.

    Article  CAS  Google Scholar 

  • Zhong, C., Liu, T., Gou, S., He, Y., Zhu, N., Zhu, Y., Wang, L., Liu, H., Zhang, Y., Yao, J., et al. 2019. Design and synthesis of new N-terminal fatty acid modified-antimicrobial peptide analogues with potent in vitro biological activity. Eur. J. Med. Chem. 182, 111636.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Key Research and Development ProGram of China (2018YFA0902000); National Natural Science Foundation of China (No.82173863; No.81803591); the fellowship of china postdoctoral science foundation (2020T130723); Natural Science Foundation of Jiangsu Province of China (No. BK20180563; No. BK2020-1327); the Basic Scientific Research Business Expense Project of China Pharmaceutical University (No. 2632021ZD07). Youth Science and Technology Talent Support Project of Jiangsu Association for Science and Technology (tj1288).

Author information

Authors and Affiliations

Authors

Contributions

Changlin Zhou and Lingman Ma designed research; Liping Wang performed the experiments and edited the manuscript; Xiaoyun Liu, Xinyue Ye, Chenyu Zhou, Wenxuan Zhao contributed new methods; Changlin Zhou and Lingman Ma provided funding sources. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Changlin Zhou or Lingman Ma.

Additional information

Conflict of Interest

All authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Liu, X., Ye, X. et al. Potent antibacterial and antibiofilm activities of TICbf-14, a peptide with increased stability against trypsin. J Microbiol. 60, 89–99 (2022). https://doi.org/10.1007/s12275-022-1368-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-022-1368-9

Keywords

Navigation