Skip to main content
Log in

The type II histidine triad protein HtpsC facilitates invasion of epithelial cells by highly virulent Streptococcus suis serotype 2

  • Microbial Pathogenesis and Host-Microbe Interaction
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Streptococcus suis serotype 2 (S. suis 2) is an important zoonotic pathogen that presents a significant threat both to pigs and to workers in the pork industry. The initial steps of S. suis 2 pathogenesis are unclear. In this study, we found that the type II histidine triad protein HtpsC from the highly virulent Chinese isolate 05ZYH33 is structurally similar to internalin A (InlA) from Listeria monocytogenes, which plays an important role in mediating listerial invasion of epithelial cells. To determine if HtpsC and InlA function similarly, an isogenic htpsC mutant (ΔhtpsC) was generated in S. suis by homologous recombination. The htpsC deletion strain exhibited a diminished ability to adhere to and invade epithelial cells from different sources. Double immunofluorescence microscopy also revealed reduced survival of the ΔhtpsC mutant after co-cultivation with epithelium. Adhesion to epithelium and invasion by the wild type strain was inhibited by a monoclonal antibody against E-cadherin. In contrast, the htpsC-deficient mutant was unaffected by the same treatment, suggesting that E-cadherin is the host-cell receptor that interacts with HtpsC and facilitates bacterial internalization. Based on these results, we propose that HtpsC is involved in the process by which S. suis 2 penetrates host epithelial cells, and that this protein is an important virulence factor associated with cell adhesion and invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auger, J.P., Christodoulides, M., Segura, M., Xu, J., and Gottschalk, M. 2015. Interactions of Streptococcus suis serotype 2 with human meningeal cells and astrocytes. BMC Res. Notes8, 607.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benga, L., Goethe, R., Rohde, M., and Valentin-Weigand, P. 2010. Non-encapsulated strains reveal novel insights in invasion and survival of Streptococcus suis in epithelial cells. Cell. Microbiol.6, 867–881.

    Article  CAS  Google Scholar 

  • Bennett-Wood, V.R., Carapetis, J.R., and Robins-Browne, R.M. 1998. Ability of clinical isolates of group A streptococci to adhere to and invade HEp-2 epithelial cells. J. Med. Microbiol.47, 899–906.

    Article  CAS  PubMed  Google Scholar 

  • Bierne, H., Sabet, C., Personnic, N., and Cossart, P. 2007. Internalins: a complex family of leucine-rich repeat-containing proteins in Listeria monocytogenes. Microbes Infect.9, 1156–1166.

    Article  CAS  PubMed  Google Scholar 

  • Bober, M., Mörgelin, M., Olin, A.I., von Pawel-Rammingen, U., and Collin, M. 2011. The membrane bound LRR lipoprotein Slr, and the cell wall-anchored M1 protein from Streptococcus pyogenes both interact with type I collagen. PLoS ONE6, e20345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, C., Tang, J., Dong, W., Wang, C., Feng, Y., Wang, J., Zheng, F., Pan, X., Liu, D., Li, M., et al. 2007. A glimpse of streptococcal toxic shock syndrome from comparative genomics of S. suis 2 Chinese isolates. PLoS ONE2, e315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eshghi, A., Gaultney, R.A., England, P., Brûlé, S., Miras, I., Sato, H., Coburn, J., Bellalou, J., Moriarty, T.J., Haouz, A., et al. 2018. An extracellular Leptospira interrogans leucine-rich repeat protein binds human E- and VE-cadherins. Cell. Microbiol.21, e12949.

    PubMed  PubMed Central  Google Scholar 

  • Ferrando, M.L., De Greeff, A., van Rooijen, W.J.M., Stockhofe-Zurwieden, N., Nielsen, J., Wichgers Schreur, P.J., Nielsen, J., Schreur, P.J.W., Pannekoek, Y., Heuvelink, A., et al. 2015. Host-pathogen interaction at the intestinal mucosa correlates with zoonotic potential of Streptococcus suis. J. Infect. Dis.212, 95–105.

    Article  CAS  PubMed  Google Scholar 

  • Ferrando, M.L. and Schultsz, C. 2016. A hypothetical model of host-pathogen interaction of Streptococcus suis in the gastro-intestinal tract. Gut Microbes7, 154–162.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fittipaldi, N., Segura, M., Grenier, D., and Gottschalk, M. 2012. Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis. Future Microbiol.7, 259–279.

    Article  CAS  PubMed  Google Scholar 

  • Fouts, D.E., Matthias, M.A., Adhikarla, H., Adler, B., Amorim-Santos, L., Berg, D.E., Bulach, D., Buschiazzo, A., Chang, Y.F., Galloway, R., et al. 2016. What makes a bacterial species pathogenic?: comparative genomic analysis of the genus Leptospira. PLoS Negl. Trop. Dis.10, e0004403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garandeau, C., Réglier-Poupet, H., Dubail, I., Beretti, J.L., Berche, P., and Charbit, A. 2002. The sortase SrtA of Listeria monocytogenes is involved in processing of internalin and in virulence. Infect. Immun.70, 1382–1390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamon, M., Bierne, H., and Cossart, P. 2006. Listeria monocytogenes a multifaceted model. Nat. Rev. Microbiol.4, 423–434.

    Article  CAS  PubMed  Google Scholar 

  • Handfield, M., Progulske-Fox, A., and Hillman, J.D. 2005. In vivo induced genes in human diseases. Periodontology 200038, 123–134.

    Article  PubMed  Google Scholar 

  • Lalonde, M., Segura, M., Lacouture, S., and Gottschalk, M. 2000. Interactions between Streptococcus suis serotype 2 and different epithelial cell lines. Microbiology146, 1913–1921.

    Article  CAS  PubMed  Google Scholar 

  • Lecuit, M., Nelson, D.M., Smith, S.D., Khun, H., Huerre, M., Vacher-Lavenu, M.C., Gordon, J.I., and Cossart, P. 2004. Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes role of internalin interaction with trophoblast E-cadherin. Proc. Natl. Acad. Sci. USA101, 6152–6157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lecuit, M., Ohayon, H., Braun, L., Mengaud, J., and Cossart, P. 1997. Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization. Infect. Immun.65, 5309–5319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, M., Shao, Z.Q., Guo, Y., Wang, L., Hou, T., Hu, D., Zheng, F., Tang, J., Wang, C., Feng, Y., et al. 2015. The type II histidine triad protein HtpsC is a novel adhesion with the involvement of Streptococcus suis virulence. Virulence6, 631–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, S., Song, J., Huang, H., Chen, W., Li, M., Zhao, Y., Cong, Y., Zhu, J., Rao, X., Hu, X., et al. 2013. Identification of in-vivo induced genes of Streptococcus suis serotype 2 specially expressed in infected human. Microb. Pathog.63, 8–15.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Tan, C., Zhou, Y., Fu, S., Hu, L., Hu, J., Chen, H., and Bei, W. 2011. The two-component regulatory system CiaRH contributes to the virulence of Streptococcus suis 2. Vet. Microbiol.148, 99–104.

    Article  CAS  PubMed  Google Scholar 

  • Li, M., Wang, C., Feng, Y., Pan, X., Cheng, G., Wang, J., Ge, J., Zheng, F., Cao, M., Dong, Y., et al. 2008. SalK/SalR, a two-component signal transduction system, is essential for full virulence of highly invasive Streptococcus suis serotype 2. PLoS ONE3, e2080.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Livak, K.J. and Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., Zhu, S., Sun, Y., Li, N., Gu, J., Sun, C., Feng, X., Han, W., Jiang, J.X., and Lei, L. 2017. Selection of potential virulence factors contributing to Streptococcus suis serotype 2 penetration into the blood-brain barrier in an in vitro co-culture model. J. Microbiol. Biotechnol.27, 161–170.

    Article  CAS  PubMed  Google Scholar 

  • Lun, Z.R., Wang, Q.P., Chen, X.G., Li, A.X., and Zhu, X.Q. 2007. Streptococcus suis an emerging zoonotic pathogen. Lancet Infect. Dis.7, 201–209.

    Article  PubMed  Google Scholar 

  • Maddocks, S.E., Jenkins, R.E., Rowlands, R.S., Purdy, K.J., and Cooper, R.A. 2013. Manuka honey inhibits adhesion and invasion of medically important wound bacteria in vitro. Future Microbiol.8, 1523–1536.

    Article  CAS  PubMed  Google Scholar 

  • Meng, F., Wu, N.H., Seitz, M., Herrler, G., and Valentin-Weigand, P. 2016. Efficient suilysin-mediated invasion and apoptosis in porcine respiratory epithelial cells after streptococcal infection under air-liquid interface conditions. Sci. Rep.6, 26748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miras, I., Saul, F., Nowakowski, M., Weber, P., Haouz, A., Shepard, W., and Picardeau, M. 2015. Structural characterization of a novel subfamily of leucine-rich repeat proteins from the human pathogen Leptospira interrogans. Acta Cryst.71, 1351–1359.

    CAS  Google Scholar 

  • Ng, A.C., Eisenberg, J.M., Heath, R.J., Huett, A., Robinson, C.M., Nau, G.J., and Xavier, R.J. 2011. Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity. Proc. Natl. Acad. Sci. USA108, 4631–4638.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen, H., Engelbrecht, J., Brunak, S., and von Heijne, G. 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng.10, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Normile, D. 2005. WHO probes deadliness of China’s pig-borne disease. Science309, 1308–1309.

    Article  CAS  PubMed  Google Scholar 

  • Norton, P.M., Rolph, C., Ward, P.N., Bentley, R.W., and Leigh, J.A. 1999. Epithelial invasion and cell lysis by virulent strains of Streptococcus suis is enhanced by the presence of suilysin. FEMS Immunol. Med. Microbiol.26, 25–35.

    Article  CAS  PubMed  Google Scholar 

  • Picardeau, M. 2017. Virulence of the zoonotic agent of leptospirosis: still terra incognita? Nat. Rev. Microbiol.15, 297–307.

    Article  CAS  PubMed  Google Scholar 

  • Pizarro-Cerdá, J., Kühbacher, A., and Cossart, P. 2012. Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view. Cold Spring Harb. Perspect. Med.2, a010009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwerk, C., Papandreou, T., Schuhmann, D., Nickol, L., Borkowski, J., Steinmann, U., Quednau, N., Stump, C., Weiss C., Berger, J., et al. 2012. Polar invasion and translocation of Neisseria meningitidis and Streptococcus suis in a novel human model of the blood-cerebrospinal fluid barrier. PLoS ONE7, e30069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segura, M., Calzas, C., Grenier, D., and Gottschalk, M. 2016. Initial steps of the pathogenesis of the infection caused by Streptococcus suis fighting against nonspecific defenses. FEBS Lett.590, 3772–3799.

    Article  CAS  PubMed  Google Scholar 

  • Segura, M., Fittipaldi, N., Calzas, C., and Gottschalk, M. 2017. Critical Streptococcus suis virulence factors: are they all really critical? Trends Microbiol.25, 585–599.

    Article  CAS  PubMed  Google Scholar 

  • Seitz, M., Baums, C.G., Neis, C., Benga, L., Fulde, M., Rohde, M., Goethe, R., and Valentin-Weigand, P. 2013. Subcytolytic effects of suilysin on interaction of Streptococcus suis with epithelial cells. Vet. Microbiol.167, 584–591.

    Article  CAS  PubMed  Google Scholar 

  • Shi, X., Ye, H., Wang, J., Li, Z., Wang, J., Chen, B., Wen, R., Hu, Q., and Feng, Y. 2016. Loss of 89K pathogenicity island in epidemic Streptococcus suis, China. Emerg. Infect. Dis.22, 1126–1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sriskandan, S. and Slater, J.D. 2006. Invasive disease and toxic shock due to zoonotic Streptococcus suis an emerging infection in the east? PLoS Med.3, e187.

    Article  PubMed  PubMed Central  Google Scholar 

  • Staats, J.J., Feder, I., Okwumabua, O., and Chengappa, M.M. 1997. Streptococcus suis past and present. Vet. Res. Commun.21, 381–407.

    Article  CAS  PubMed  Google Scholar 

  • Sutcliffe, I.C. and Harrington, D.J. 2002. Pattern searches for the identification of putative lipoprotein genes in Gram-positive bacterial genomes. Microbiology148, 2065–2077.

    Article  CAS  PubMed  Google Scholar 

  • Takamatsu, D., Osaki, M., and Sekizaki, T. 2001. Construction and characterization of Streptococcus suis-Escherichia coli shuttle cloning vectors. Plasmid45, 101–113.

    Article  CAS  PubMed  Google Scholar 

  • Tang, J., Wang, C., Feng, Y., Yang, W., Song, H., Chen, Z., Yu, H., Pan, X., Zhou, X., Wang, H., et al. 2006. Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2. PLoS Med.3, e151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valenti-Weigand, P., Benkel, P., Rohde, M., and Chhatwal, G.S. 1996. Entry and intracellular survival of group B streptococci in J774 macrophages. Infect. Immun.64, 2467–2473.

    Article  PubMed Central  Google Scholar 

  • Vanier, G., Segura, M., Friedl, P., Lacouture, S., and Gottschalk, M. 2004. Invasion of porcine brain microvascular endothelial cells by Streptococcus suis serotype 2. Infect. Immun.72, 1441–1449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanier, G., Segura, M., and Gottschalk, M. 2007. Characterization of the invasion of porcine endothelial cells by Streptococcus suis serotype 2. Can. J. Vet. Res.71, 81–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ye, H., Cai, M., Zhang, H., Li, Z., Wen, R., and Feng, Y. 2016. Functional definition of BirA suggests a biotin utilization pathway in the zoonotic pathogen Streptococcus suis. Sci. Rep.6, 26479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, F., Shao, Z.Q., Hao, X., Wu, Q., Li, C., Hou, H., Hu, D., Wang, C., and Pan, X. 2018. Identification of oligopeptide-binding protein (OppA) and its role in the virulence of Streptococcus suis serotype 2. Microb. Pathog.118, 322–329.

    Article  CAS  PubMed  Google Scholar 

  • Zipfel, C. and Felix, G. 2005. Plants and animals: a different taste for microbes? Curr. Opin. Plant Biol.8, 353–360.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science foundation of China (award 81472932), the National Key Research and Development Program of China (award 2018-YFC1602800), and the Chongqing Basic Research and Frontier Exploration Project (award cstc2019jcyj-msxmX0142).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Li or Min Cao.

Ethics declarations

The authors have no conflict of interest to report.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Li, S., Shen, X. et al. The type II histidine triad protein HtpsC facilitates invasion of epithelial cells by highly virulent Streptococcus suis serotype 2. J Microbiol. 59, 949–957 (2021). https://doi.org/10.1007/s12275-021-1129-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-1129-1

Keywords

Navigation