Skip to main content
Log in

Optimization of bacterial sporulation using economic nutrient for self-healing concrete

  • Microbial Ecology and Environmental Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The use of heat- and alkali-resistant bacteria is essential for the biological repair of damaged concrete. Lysinibacillus boronitolerans YS11 was isolated from the rhizosphere of Miscanthus sacchariflorus. The increased pH in the urea-minus condition during the growth of the YS11 strain promoted calcium carbonate (CaCO3) formation. To identify the optimum medium that promoted the growth of the YS11 strain, a Plackett-Burman design was conducted for the screening process. Consequently, malt powder, rice bran, (NH4)2SO4, and corn syrup were chosen to enhance YS11 growth. The optimization of these four useful factors was carried out using a central composite design. To obtain higher survivability in mortar, the sporulation process is essential, and additional factors such as Mn2+, Fe2+, and Ca2+ were found to contribute to sporulation. A mixture of L. boronitolerans YS11 spore powder, cement, paste, sand, yeast extract, calcium lactate, and water showed a healing effect on a 0.3 mm mortar crack in 7 days. Furthermore, calcium carbonate precipitation was observed over the crack surface. Thus, we confirmed that mortar treated with YS11 spore powder was effective in healing micro-cracks in concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai, Y., Guo, X.J., Li, Y.Z., and Huang, T. 2017. Experimental and vwisual research on the microbial induced carbonate precipitation by Pseudomonas aeruginosa. AMB Express7, 57.

    PubMed  PubMed Central  Google Scholar 

  • Basha, S., Lingamgusta, L.K., Kannali, J., Gajula, S.K., Bandikari, R., Dasari, S., Dalavai, V., Chinthala, P., Gundala, P.B., Kutagolla, P., et al. 2018. Subsurface endospore-forming bacteria possess biosealant properties. Sci. Rep.8, 6448.

    PubMed  PubMed Central  Google Scholar 

  • Basu, S., Bose, C., Ojha, N., Das, N., Das, J., Pal, M., and Khurana, S. 2015. Evolution of bacterial and fungal growth media. Bioinformation11, 182–184.

    PubMed  PubMed Central  Google Scholar 

  • Belie, N.D., Gruyaert, E., Tabbaa, A.A., Antonai, P., Baera, C., Bajare, D., Darquennes, A., Davies, R., Ferrara, L., Jefferson, T., et al. 2018. A review of self-healing concrete for damage management of structures. Adv. Mater. Interfaces5, 17.

    Google Scholar 

  • Bhosale, S. and Vijayalakshmi, D. 2015. Processing and nutritional composition of rice bran. Curr. Res. Nutr. Food Sci. J.3, 74–80.

    Google Scholar 

  • Bribián, I.Z., Capilla, A.V., and Usón, A.A. 2011. Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build Environ.46, 1133–1140.

    Google Scholar 

  • Carney, L.T. and Lane, T.W. 2014. Parasites in algae mass culture. Front. Microbiol.5, 278.

    PubMed  PubMed Central  Google Scholar 

  • Christopher, M., Mathew, A.K., Kiran, K.M., Pandey, A., and Sukumaran, R.K. 2017. A biorefinery-based approach for the production of ethanol from enzymatically hydrolysed cotton stalks. Bioresour. Technol.242, 178–183.

    CAS  PubMed  Google Scholar 

  • Church, B.D. and Harvorson, H. 1959. Dependence of the heat resistance of bacterial endospores on their dipicolinic acid content. Nature183, 124–125.

    CAS  PubMed  Google Scholar 

  • De Muynck, W., De Belie, N., and Verstraete, W. 2010. Microbial carbonate precipitation in construction materials: A review. Ecol. Eng.36, 118–136.

    Google Scholar 

  • Driks, A. 2004. From rings to layers: surprising patterns of protein deposition during bacterial spore assembly. J. Bacteriol.186, 4423–4426.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gat, D., Tsesarsk, Y M., Shamir, D., and Ronen, Z. 2014. Accelerated microbial-induced CaCO3 precipitation in a defined coculture of ureolytic and non-ureolytic bacteria. Biogeosciences11, 2561–2569.

    CAS  Google Scholar 

  • Gill, A. 2017. The importance of bacterial culture to food microbiology in the age of genomics. Front. Microbiol.8, 777.

    PubMed  PubMed Central  Google Scholar 

  • Granger, A.C., Gaidamakova, E.K., Matrosova, V.Y., Daly, M.J., and Setlow, P. 2010. Effects of Mn and Fe levels on Bacillus subtilis spore resistance and effects of Mn2+, other divalent cations, orthophosphate, and dipicolinic acid on protein resistance to ionizing radiation. Appl. Environ. Microbiol.77, 32–40.

    PubMed  PubMed Central  Google Scholar 

  • Hager, M.D., Greil, P., Leyens, C., Van Der, Z.S., and Schubert, U.S. 2010. Self-healing materials. Adv. Mater.22, 5323–5430.

    Google Scholar 

  • Hammes, F. and Verstraete, W. 2002. Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev. Environ. Sci. Biotechnol.1, 3–7.

    CAS  Google Scholar 

  • Han, S., Choi, E.K., Park, W., and Chung, N. 2019. Effectiveness of expanded clay as a bacteria carrier for self-healing concrete. Appl. Biol. Chem.62, 19.

    Google Scholar 

  • Huang, J., Ou, Y., Zhang, D., Zhang, G., and Pan, Y. 2018. Optimization of the culture condition of Bacillus mucilaginous using Agaricus bisporus industrial wastewater by Plackett-Burman combined with Box-Behnken response surface method. AMB Express8, 141.

    PubMed  PubMed Central  Google Scholar 

  • Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., and Kopriva, S. 2017. The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions. Front. Plant Sci.8, 1617.

    PubMed  PubMed Central  Google Scholar 

  • Jonkers, H.M., Thijssen, A., Muyzer, G., Copuroglu, O., and Schlangen, E. 2010. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng.36, 230–235.

    Google Scholar 

  • Joshi, S., Yadav, S., Nerurkar, A., and Desai, A.J. 2007. Statistical optimization of medium components for the production of biosurfactant by Bacillus licheniformis K51. J. Microbiol. Biotechnol.17, 313–319.

    CAS  PubMed  Google Scholar 

  • Kim, H.J., Eom, H.J., Park, C., Jung, J., Shin, B., Kim, W., Chung, N., Choi, I.G., and Park, W. 2016. Calcium carbonate precipitation by Bacillus and Sporosarcina strains isolated from concrete and analysis of the bacterial community of concrete. J. Microbiol. Biotechnol.26, 540–548.

    CAS  PubMed  Google Scholar 

  • Kim, H.J., Shin, B., Lee, Y.S., and Park, W. 2017. Modulation of calcium carbonate precipitation by exopolysaccharide in Bacillus sp. JH7. Appl. Microbiol. Biotechnol.101, 6551–6561.

    CAS  PubMed  Google Scholar 

  • Koster, S.A.L., Mors, R.M., Nugteren, H.W., Jonkers, H.M., Meesters, G.M.H., and Van Ommen, J.R. 2015. Geopolymer coating of bacteria-containing granules for use in self-healing concrete. Procedia Eng.102, 475–484.

    Google Scholar 

  • Ku, H., Wang, H., Pattarachaiyakoop, N., and Trada, M. 2011. A review of tensile properties of natural fiber reinforced polymer composites. Compos. Part B-Eng.42, 856–873.

    Google Scholar 

  • Lagier, J.C., Edouard, S., Pagnier, I., Mediannikov, O., Drancourt, M., and Raoult, D. 2015. Current and past strategies for bacterial culture in clinical microbiology. Clin. Microbiol. Rev.28, 208–236.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, Y.S., Kim, H.J., and Park, W. 2017. Non-ureolytic calcium carbonate precipitation by Lysinibacillus sp. YS11 isolated from the rhizosphere of Miscanthus sacchariflorus. J. Microbiol.55, 440–447.

    CAS  PubMed  Google Scholar 

  • Lee, Y.S. and Park, W. 2018. Current challenges and future directions for bacterial self-healing concrete. Appl. Microbiol. Biotechnol.102, 3059–3070.

    CAS  PubMed  Google Scholar 

  • Lee, Y.S. and Park, W. 2019. Enhanced calcium carbonate-biofilm complex formation by alkali-generating Lysinibacillus boronitolerans YS11 and alkaliphilic Bacillus sp. AK13. AMB Express.9, 49.

    PubMed  PubMed Central  Google Scholar 

  • Leggett, M.J., Mcdonnell, G., Denyer, S.P., Setlow, P., and Maillard, J.Y. 2012. Bacterial spore structures and their protective role in biocide resistance. J. Appl. Microbiol.113, 485–498.

    CAS  PubMed  Google Scholar 

  • Lucas, S.S., Moxham, C., Tziviloglou, E., and Jonkers, H.M. 2018. Study of self-healing properties in concrete with bacteria encapsulated in expanded clay. Sci. Technol. Mater.30, 93–98.

    Google Scholar 

  • Meadorparton, J. and Popham, D.L. 2000. Structural analysis of Bacillus subtilis spore peptidoglycan during sporulation. J. Bacteriol.182, 4491–4499.

    CAS  Google Scholar 

  • Mignon, A., Snoeck, D., Dubruel, P., Van, V.S., and De Beli, N. 2017. Crack mitigation in concrete: Superabsorbent polymers as key to success?. Materials10, 237.

    PubMed Central  Google Scholar 

  • Mobley, H.L. and Hausinger, R.P. 1989. Microbial ureases: significance, regulation, and molecular characterization. Microbiol. Rev.53, 85–108.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mortensen, B.M., Haber, M.J., Dejong, J.T., Caslake, L.F., and Nelson, D.C. 2011. Effects of environmental factors on microbial induced calcium carbonate precipitation. J. Appl. Microbiol.111, 338–349.

    CAS  PubMed  Google Scholar 

  • Owusu, P.A. and Sarkodie, S.A. 2016. A review of renewable energy sources, sustainability issues and climate changemitigation. Cogent Eng.3, 1167990.

    Google Scholar 

  • Paritosh, K., Kushwaha, S.K., Yadav, M., Pareek, N., Chawade, A., and Vivekanand, V. 2017. Food waste to energy: an overview of sustainable approaches for food waste management and nutrient recycling. Biomed Res.1, 19.

    Google Scholar 

  • Palin, D., Wiktor, V., and Honkers, H.M. 2016. A bacteria-based bead for possible self-healing marine concrete applications. Smart Mater. Struct.25, 8.

    Google Scholar 

  • Park, K.B. and Noguchi, T. 2017. Effects of mixing and curing temperature on the strength development and pore structure of fly ash blended mass concrete. Adv. Mater. Sci. Eng.2017, 1–11.

    Google Scholar 

  • Popham, D.L., Meadorparton, J., Costello, C.E., and Setlow, P. 1999. Spore peptidoglycan structure in a cwlD dacB double mutant of Bacillus subtilis. J. Bacteriol.181, 6205–6209.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Priya, A., Mandal, A.K., Ball, A.S., Manefield, M., Lal, B., and Sarma, P.M. 2015. Mass culture strategy for bacterial yeast co-culture for degradation of petroleum hydrocarbons in marine environment. Mar. Pollut. Bull.100, 191–199.

    CAS  PubMed  Google Scholar 

  • Seifan, M., Sarmah, A.K., Samani, A.K., Ebrahiminezhad, A., Ghasemi, Y., and Berenjuan, A. 2018. Mechanical properties of bio self-healing concrete containing immobilized bacteria with iron oxide nanoparticles. Appl. Microbiol. Biotechnol.102, 4489–4498.

    CAS  PubMed  Google Scholar 

  • Shinohara, Y.M., Sukenobe, J., Imaizumi, T., and Nakahara, T. 2008. Survival of freeze-dried bacteria. J. Gen. Appl. Microbiol.54, 9–24.

    Google Scholar 

  • Wang, J., Tittelboom, K.V., Belie, N.D., and Verstraete, W. 2012. Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Constr. Build Mater.26, 532–540.

    Google Scholar 

  • Wiktor, V. and Jonkers, H.M. 2011. Quantification of crack-healing in novel bacteria-based self-healing concrete. Cemnt. Concrete. Comp.33, 763–770.

    CAS  Google Scholar 

  • Wiktor, V. and Jonkers, H.M. 2016. Bacteria-based concrete: from concept to market. Smart. Mater. Struct.25, 8.

    Google Scholar 

  • Worrell, E., Price, L., Martin, N., Hendricks, C., and Ozawa, M.L. 2001. Carbon dioxide emissions from the global cement industry. Annu. Rev. Energ. Env.26, 303–329.

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR-202002108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woojun Park.

Ethics declarations

Compliance with Ethical Standards This study does not contain any experiment or analysis involving human participants or animals.

Conflict of Interest The authors declare no conflict of interests.

Ethical Statement This study does not contain any experiment or analysis involving human participants or animals.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, Y., Lee, KE., Cha, IT. et al. Optimization of bacterial sporulation using economic nutrient for self-healing concrete. J Microbiol. 58, 288–296 (2020). https://doi.org/10.1007/s12275-020-9580-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-9580-y

Keywords

Navigation