Skip to main content
Log in

Rapid determination of carbapenem resistance by low-cost colorimetric methods: Propidium Iodide and alamar blue staining

  • Microbial Ecology and Environmental Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Carbapenems are a class of β-lactam antibiotics with a broad antimicrobial activity spectrum. Owing to their sturdy structures resistant to most β-lactamases, they have been regarded as one of the last-resort antibiotics for combating multidrugresistant bacterial infections. However, the emergence of carbapenem resistance increases predominantly in nosocomial pathogens. To prevent spread of carbapenem resistance in early stages, it is imperative to develop rapid diagnostic tests that will substantially reduce the time and cost in determining carbapenem resistance. Thus, we devised a staining-based diagnostic method applicable to three different Gram-negative pathogens of Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae, all with the high potential to develop carbapenem resistance. Regardless of the resistance mechanisms presented by bacterial species and strains, double staining with propidium iodide (PI) and alamar blue (AB) identified resistant bacteria with an average sensitivity of 95.35%, 7 h after imipenem treatments in 343 clinical isolates. Among the three species tested, A. baumannii showed the highest diagnostic sensitivity of 98.46%. The PI and ABmediated staining method could be a promising diagnostic method with high-throughput efficacy and low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afzal, R.K., Hannan, A., Ahmed, S.A., and Khalid, F. 2018. Antibacterial activity of methylglyoxal against multi-drug resistant Salmonella typhi. Pak. Armed Forces Med. J.68, 24–28.

    Google Scholar 

  • Boran, N., Vivian, B., Logan, C., and Grogan, J. 2015. Formation of a carbapenemase resistance detection algorithm for use in the routine laboratory. Br. J. Biomed. Sci.72, 12–22.

    Article  CAS  PubMed  Google Scholar 

  • Boulos, L., Prevost, M., Barbeau, B., Coallier, J., and Desjardins, R. 1999. LIVE/DEAD BacLight: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J. Microbiol. Methods37, 77–86.

    Article  CAS  PubMed  Google Scholar 

  • Burnham, C.D., Leeds, J., Nordmann, P., O’Grady, J., and Patel, J. 2017. Diagnosing antimicrobial resistance. Nat. Rev. Microbiol.15, 697–703.

    Article  CAS  PubMed  Google Scholar 

  • Chouchani, C., Marrakchi, R., and El Salabi, A. 2011. Evolution of β-lactams resistance in Gram-negative bacteria in Tunisia. Crit. Rev. Microbiol.37, 167–177.

    Article  CAS  PubMed  Google Scholar 

  • Codjoe, F.S. and Donkor, E.S. 2017. Carbapenem resistance: A review. Med. Sci.6, 1.

  • Doi, Y. and Paterson, D.L. 2015. Carbapenemase-producing Enterobacteriaceae. Semin. Respir. Crit. Care Med.36, 74–84.

    Article  PubMed  PubMed Central  Google Scholar 

  • Donkor, E.S. 2013. Sequencing of bacterial genomes: Principles and insights into pathogenesis and development of antibiotics. Genes (Basel)4, 556–572.

    Article  Google Scholar 

  • Elander, R. 2003. Industrial production of β-lactam antibiotics. Appl. Microbiol. Biotechnol.61, 385–392.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, S.H., Bae, I.K., Park, K.O., An, Y.J., Sohn, S.G., Jang, S.J., Sung, K.H., Yang, K.S., Lee, K., Young, D., et al. 2006. Outbreaks of imipenem-resistant Acinetobacter baumannii producing carbapenemases in Korea. J. Microbiol.44, 423–431.

    CAS  PubMed  Google Scholar 

  • Kaprelyants, A.S., Gottschal, J.C., and Kell, D.B. 1993. Dormancy in non-sporulating bacteria. FEMS Microbiol. Rev.104, 271–285.

    Article  CAS  Google Scholar 

  • Katchanov, J., Asar, L., Klupp, E.M., Both, A., Rothe, C., Konig, C., Rohde, H., Kluge, S., and Maurer, F.P. 2018. Carbapenem-resistant Gram-negative pathogens in a German University Medical Center: Prevalence, clinical implications and the role of novel β-lactam/ β-lactamase inhibitor combinations. PLoS One13, e0195757.

  • Knapp, K.M. and English, B.K. 2001. Carbapenems. Semin. Pediatr. Infect. Dis.12, 175–185.

    Article  Google Scholar 

  • Kuo, H.Y., Chang, K.C., Kuo, J.W., Yueh, H.W., and Liou, M.L. 2012. Imipenem: a potent inducer of multidrug resistance in Acinetobacter baumannii. Int. J. Antimicrob. Agents39, 33–38.

    Article  CAS  PubMed  Google Scholar 

  • Lewenza, S., Abboud, J., Poon, K., Kobryn, M., Humplik, I., Bell, J.R., Mardan, L., and Reckseidler-Zenteno, S. 2018. Pseudomonas aeruginosa displays a dormancy phenotype during long-term survival in water. PLoS One13, e0198384.

  • Livermore, D.M., Struelens, M., Amorim, J., Baquero, F., Bille, J., Canton, R., Henning, S., Gatermann, S., Marchese, A., Mittermayer, H., et al. 2002. Multicentre evaluation of the VITEK 2 Advanced Expert System for interpretive reading of antimicrobial resistance tests. J. Antimicrob. Chemother.49, 289–300.

    Article  CAS  PubMed  Google Scholar 

  • Livermore, D.M., Warner, M., Mushtaq, S., Doumith, M., Zhang, J., and Woodford, N. 2011. What remains against carbapenem-resistant Enterobacteriaceae? Evaluation of chloramphenicol, ciprofloxacin, colistin, fosfomycin, minocycline, nitrofurantoin, temocillin and tigecycline. Int. J. Antimicrob. Agents37, 415–419.

    Article  CAS  PubMed  Google Scholar 

  • Markelz, A.E., Mende, K., Murray, C.K., Yu, X., Zera, W.C., Hospenthal, D.R., Beckius, M.L., Calvano, T., and Akers, K.S. 2011. Carbapenem susceptibility testing errors using three automated systems, disk diffusion, etest, and broth microdilution and carbapenem resistance genes in isolates of Acinetobacter baumanniicalcoaceticus complex. Antimicrob. Agents Chemother.55, 4707–4711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGarvey, K.M., Queitsch, K., and Fields, S. 2012. Wide variation in antibiotic resistance proteins identified by functional metagenomic screening of a soil DNA library. Appl. Environ. Microbiol.78, 1708–1714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naas, T., Cuzon, G., Bogaerts, P., Glupczynski, Y., and Nordmann, P. 2011. Evaluation of a DNA microarray (Check-MDR CT102) for rapid detection of TEM, SHV, and CTX-M extended-spectrum beta-lactamases and of KPC, OXA-48, VIM, IMP, and NDM-1 carbapenemases. J. Clin. Microbiol.49, 1608–1613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Netuschil, L., Auschill, T.M., Sculean, A., and Arweiler, N.B. 2014. Confusion over live/dead stainings for the detection of vital microorganisms in oral biofilms-which stain is suitable? BMC Oral Health14, 2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel, G. and Bonomo, R.A. 2011. Status report on carbapenemases: challenges and prospects. Expert Rev. Anti Infect. Ther.9, 555–570.

    Article  CAS  PubMed  Google Scholar 

  • Paterson, D.L. 2000. Recommendation for treatment of severe infections caused by Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs). Clin. Microbiol. Infect.6, 460–463.

    Article  CAS  PubMed  Google Scholar 

  • Paterson, D.L. and Bonomo, R.A. 2005. Extended-spectrum β-lactamases: a clinical update. Clin. Microbiol. Rev.18, 657–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramanathan, B., Jindal, H.M., Le, C.F., Gudimella, R., Anwar, A., Razali, R., Poole-Johnson, J., Manikam, R., and Sekaran, S.D. 2017. Next generation sequencing reveals the antibiotic resistant variants in the genome of Pseudomonas aeruginosa. PLoS One12, e0182524.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruppe, E., Woerther, P.L., and Barbier, F. 2015. Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann. Intensive Care5, 21.

    Article  PubMed Central  Google Scholar 

  • Saint-Ruf, C., Crussard, S., Franceschi, C., Orenga, S., Ouattara, J., Ramjeet, M., Surre, J., and Matic, I. 2016. Antibiotic susceptibility testing of the Gram-negative bacteria based on flow cytometry. Front. Microbiol.7, 1121.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sauget, M., Cabrolier, N., Manzoni, M., Bertrand, X., and Hocquet, D. 2014. Rapid, sensitive and specific detection of OXA-48-likeproducing Enterobacteriaceae by matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry. J. Microbiol. Methods105, 88–91.

    Article  CAS  PubMed  Google Scholar 

  • Seitz, P. and Blokesch, M. 2013. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria. FEMS Microbiol. Rev.37, 336–363.

    Article  CAS  PubMed  Google Scholar 

  • Shiloh, M.U., Ruan, J., and Nathan, C. 1997. Evaluation of bacterial survival and phagocyte function with a fluorescence-based microplate assay. Infect. Immun.65, 3193–3198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparbier, K., Schubert, S., Weller, U., Boogen, C., and Kostrzewa, M. 2012. Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based functional assay for rapid detection of resistance against beta-lactam antibiotics. J. Clin. Microbiol.50, 927–937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trip, H., Mende, K., Majchrzykiewicz-Koehorst, J.A., Sedee, N.J., Hulst, A.G., Jansen, H.J., Murray, C.K., and Paauw, A. 2015. Simultaneous identification of multiple beta-lactamases in Acinetobacter baumannii in relation to carbapenem and ceftazidime resistance, using liquid chromatography-tandem mass spectrometry. J. Clin. Microbiol.53, 1927–1930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van den Driessche, F., Rigole, P., Brackman, G., and Coenye, T. 2014. Optimization of resazurin-based viability staining for quantification of microbial biofilms. J. Microbiol. Methods98, 31–34.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant (HI15C1733) from the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare; a grant from Priority Research Centers Program (2019R1A6A1A11051471), funded by the National Research Foundation of Korea (NRF); and a grant (20162MFDS010) from Ministry of Food and Drug Safety in 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunjin Yoon.

Additional information

These authors contributed equally to this work.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J., Baek, J., Kweon, D. et al. Rapid determination of carbapenem resistance by low-cost colorimetric methods: Propidium Iodide and alamar blue staining. J Microbiol. 58, 415–421 (2020). https://doi.org/10.1007/s12275-020-9549-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-9549-x

Keywords

Navigation