Skip to main content
Log in

The velvet repressed vidA gene plays a key role in governing development in Aspergillus nidulans

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Fungal development is regulated by a variety of transcription factors in Aspergillus nidulans. Previous studies demonstrated that the NF-κB type velvet transcription factors regulate certain target genes that govern fungal differentiation and cellular metabolism. In this study, we characterize one of the VosA/VelB-inhibited developmental genes called vidA, which is predicted to encode a 581-amino acid protein with a C2H2 zinc finger domain at the C-terminus. Levels of vidA mRNA are high during the early and middle phases of asexual development and decrease during the late phase of asexual development and asexual spore (conidium) formation. Deletion of either vosA or velB results in increased vidA mRNA accumulation in conidia, suggesting that vidA transcript accumulation in conidia is repressed by VosA and VelB. Phenotypic analysis demonstrated that deletion of vidA causes decreased colony growth, reduced production of asexual spores, and abnormal formation of sexual fruiting bodies. In addition, the vidA deletion mutant conidia contain more trehalose and β-glucan than wild type. Overall, these results suggest that VidA is a putative transcription factor that plays a key role in governing proper fungal growth, asexual and sexual development, and conidia formation in A. nidulans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, T.H., Boylan, M.T., and Timberlake, W.E. 1988. brlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell 54, 353–362.

    Article  CAS  PubMed  Google Scholar 

  • Adams, T.H., Deising, H., and Timberlake, W.E. 1990. brlA requires both zinc fingers to induce development. Mol. Cell. Biol. 10, 1815–1817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams, T.H., Wieser, J.K., and Yu, J.H. 1998. Asexual sporulation in Aspergillus nidulans. Microbiol. Mol. Biol. Rev. 62, 35–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed, Y.L., Gerke, J., Park, H.S., Bayram, O., Neumann, P., Ni, M., Dickmanns, A., Kim, S.C., Yu, J.H., Braus, G.H., et al. 2013. The velvet family of fungal regulators contains a DNA-binding domain structurally similar to NF-κB. PLoS Biol. 11, e1001750.

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrianopoulos, A. and Timberlake, W.E. 1991. ATTS, a new and conserved DNA binding domain. Plant Cell 3, 747–748.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andrianopoulos, A. and Timberlake, W.E. 1994. The Aspergillus nidulans abaA gene encodes a transcriptional activator that acts as a genetic switch to control development. Mol. Cell. Biol. 14, 2503–2515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayram, O.S., Bayram, O., Valerius, O., Park, H.S., Irniger, S., Gerke, J., Ni, M., Han, K.H., Yu, J.H., and Braus, G.H. 2010. LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLoS Genet. 6, e1001226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayram, O. and Braus, G.H. 2012. Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol. Rev. 36, 1–24.

    Article  CAS  PubMed  Google Scholar 

  • Boylan, M.T., Mirabito, P.M., Willett, C.E., Zimmerman, C.R., and Timberlake, W.E. 1987. Isolation and physical characterization of three essential conidiation genes from Aspergillus nidulans. Mol. Cell. Biol. 7, 3113–3118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casselton, L. and Zolan, M. 2002. The art and design of genetic screens: filamentous fungi. Nat. Rev. Genet. 3, 683–697.

    Article  CAS  PubMed  Google Scholar 

  • Chang, Y.C. and Timberlake, W.E. 1993. Identification of Aspergillus brlA response elements (BREs) by genetic selection in yeast. Genetics 133, 29–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Vries, R.P., Riley, R., Wiebenga, A., Aguilar-Osorio, G., Amillis, S., Uchima, C.A., Anderluh, G., Asadollahi, M., Askin, M., Barry, K., et al. 2017. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol. 18, 28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyer, P.S. and O’Gorman, C.M. 2012. Sexual development and cryptic sexuality in fungi: insights from Aspergillus species. FEMS Microbiol. Rev. 36, 165–192.

    Article  CAS  PubMed  Google Scholar 

  • Fesel, P.H. and Zuccaro, A. 2016. β-Glucan: Crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genet. Biol. 90, 53–60.

    Article  CAS  PubMed  Google Scholar 

  • Fillinger, S., Chaveroche, M.K., van Dijck, P., de Vries, R., Ruijter, G., Thevelein, J., and d’Enfert, C. 2001. Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology 147, 1851–1862.

    Article  CAS  PubMed  Google Scholar 

  • Han, K.H. 2009. Molecular genetics of Emericella nidulans sexual development. Mycobiology 37, 171–182.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris, S.D. 2011. Hyphal morphogenesis: an evolutionary perspective. Fungal Biol. 115, 475–484.

    Article  PubMed  Google Scholar 

  • Kafer, E. 1977. Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv. Genet. 19, 33–131.

    Article  CAS  PubMed  Google Scholar 

  • Kwon, N.J., Shin, K.S., and Yu, J.H. 2010. Characterization of the developmental regulator FlbE in Aspergillus fumigatus and Aspergillus nidulans. Fungal Genet. Biol. 47, 981–993.

    Article  CAS  PubMed  Google Scholar 

  • Lee, M.K., Park, H.S., Han, K.H., Hong, S.B., and Yu, J.H. 2017. High molecular weight genomic DNA mini-prep for filamentous fungi. Fungal Genet. Biol. 104, 1–5.

    Article  CAS  PubMed  Google Scholar 

  • Marshall, M.A. and Timberlake, W.E. 1991. Aspergillus nidulans wetA activates spore-specific gene expression. Mol. Cell. Biol. 11, 55–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinelli, S.D. 1994. Aspergillus nidulans as an experimental organism. Prog. Ind. Microbiol. 29, 33–58.

    CAS  PubMed  Google Scholar 

  • Mirabito, P.M., Adams, T.H., and Timberlake, W.E. 1989. Interactions of three sequentially expressed genes control temporal and spatial specificity in Aspergillus development. Cell 57, 859–868.

    Article  CAS  PubMed  Google Scholar 

  • Ojeda-López, M., Chen, W., Eagle, C.E., Gutiérrez, G., Jia, W.L., Swilaiman, S.S., Huang, Z., Park, H.S., Yu, J.H., Cánovas, D., et al. 2018. Evolution of asexual and sexual reproduction in the aspergilli. Stud. Mycol. 91, 37–59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Park, H.S., Lee, M.K., Han, K.H., Kim, M.J., and Yu, J.H. 2019. Developmental decisions in Aspergillus nidulans, pp. 63–80. In Hoffmeister, D. and Gressler, M. (eds.), Biology of the fungal cell. Springer, Cham.

    Chapter  Google Scholar 

  • Park, H.S., Lee, M.K., Kim, S.C., and Yu, J.H. 2017. The role of VosA/VelB-activated developmental gene vadA in Aspergillus nidulans. PLoS One 12, e0177099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, H.S., Nam, T.Y., Han, K.H., Kim, S.C., and Yu, J.H. 2014. VelC positively controls sexual development in Aspergillus nidulans. PLoS One 9, e89883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, H.S., Ni, M., Jeong, K.C., Kim, Y.H., and Yu, J.H. 2012. The role, interaction and regulation of the velvet regulator VelB in Aspergillus nidulans. PLoS One 7, e45935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, H.S. and Yu, J.H. 2012a. Genetic control of asexual sporulation in filamentous fungi. Curr. Opin. Microbiol. 15, 669–677.

    Article  CAS  PubMed  Google Scholar 

  • Park, H.S. and Yu, J.H. 2012b. Multi-copy genetic screen in Aspergillus nidulans. Methods Mol. Biol. 944, 183–190.

    CAS  PubMed  Google Scholar 

  • Park, H.S. and Yu, J.H. 2016a. Molecular biology of asexual sporulation in filamentous fungi. In Hoffmeister, D. (ed.), Biochemistry and molecular biology. The mycota (A comprehensive treatise on fungi as experimental systems for basic and applied research). Springer, Cham.

    Google Scholar 

  • Park, H.S. and Yu, J.H. 2016b. Velvet regulators in Aspergillus spp. Microbiol. Biotechnol. Lett. 44, 409–419.

    Article  CAS  Google Scholar 

  • Park, H.S., Yu, Y.M., Lee, M.K., Maeng, P.J., Kim, S.C., and Yu, J.H. 2015. Velvet-mediated repression of beta-glucan synthesis in Aspergillus nidulans spores. Sci. Rep. 5, 10199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sewall, T.C., Mims, C.W., and Timberlake, W.E. 1990. abaA controls phialide differentiation in Aspergillus nidulans. Plant Cell 2, 731–739.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shaaban, M.I., Bok, J.W., Lauer, C., and Keller, N.P. 2010. Suppressor mutagenesis identifies a velvet complex remediator of Aspergillus nidulans secondary metabolism. Eukaryot. Cell 9, 1816–1824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shelest, E. 2017. Transcription factors in fungi: TFome dynamics, three major families, and dual-specificity TFs. Front. Genet. 8, 53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timberlake, W.E. 1990. Molecular genetics of Aspergillus development. Annu. Rev. Genet. 24, 5–36.

    Article  CAS  PubMed  Google Scholar 

  • Wu, M.Y., Mead, M.E., Kim, S.C., Rokas, A., and Yu, J.H. 2017. WetA bridges cellular and chemical development in Aspergillus flavus. PLoS One 12, e01795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, M.Y., Mead, M.E., Lee, M.K., Loss, E.M.O., Kim, S.C., Rokas, A., and Yu, J.H. 2018. Systematic dissection of the evolutionarily conserved WetA developmental regulator across a genus of filamentous fungi. mBio 9, e01130–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, J.H., Hamari, Z., Han, K.H., Seo, J.A., Reyes-Dominguez, Y., and Scazzocchio, C. 2004. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41, 973–981.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work by HSP was supported by the National Research Foundation of Korea (NRF) grant to HSP funded by the Korean government (NRF-2016R1C1B2010945). The work at UW-Madison (JHY) was primarily supported by the Intelligent Synthetic Biology Center of Global Frontier Project funded by the Ministry of Education, Science and Technology of Korea (No. 2011-0031955). The work by MKL was supported by the KRIBB Research Initiative Program (KGM-5231921).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Soo Park.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Supplemental Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, MJ., Jung, WH., Son, YE. et al. The velvet repressed vidA gene plays a key role in governing development in Aspergillus nidulans. J Microbiol. 57, 893–899 (2019). https://doi.org/10.1007/s12275-019-9214-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-9214-4

Keywords

Navigation