Skip to main content
Log in

Characterization of the velvet regulators in Aspergillus flavus

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Fungal development and secondary metabolism are closely associated via the activities of the fungal NK-kB-type velvet regulators that are highly conserved in filamentous fungi. Here, we investigated the roles of the velvet genes in the aflatoxigenic fungus Aspergillus flavus. Distinct from other Aspergillus species, the A. flavus genome contains five velvet genes, veA, velB, velC, velD, and vosA. The deletion of velD blocks the production of aflatoxin B1, but does not affect the formation of sclerotia. Expression analyses revealed that vosA and velB mRNAs accumulated at high levels during the late phase of asexual development and in conidia. The absence of vosA or velB decreased the content of conidial trehalose and the tolerance of conidia to the thermal and UV stresses. In addition, double mutant analyses demonstrated that VosA and VelB play an inter-dependent role in trehalose biosynthesis and conidial stress tolerance. Together with the findings of previous studies, the results of the present study suggest that the velvet regulators play the conserved and vital role in sporogenesis, conidial trehalose biogenesis, stress tolerance, and aflatoxin biosynthesis in A. flavus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, Y.L., Gerke, J., Park, H.S., Bayram, O., Neumann, P., Ni, M., Dickmanns, A., Kim, S.C., Yu, J.H., Braus, G.H., et al. 2013. The velvet family of fungal regulators contains a DNA-binding domain structurally similar to NF-kB. PLoS Biol. 11, e1001750.

    Article  PubMed  PubMed Central  Google Scholar 

  • Amaike, S. and Keller, N.P. 2011. Aspergillus flavus. Annu. Rev. Phytopathol. 49, 107–133.

    Article  PubMed  CAS  Google Scholar 

  • Amaike, S. and Keller, N.P. 2009. Distinct roles for veA and laeA in development and pathogenesis of Aspergillus flavus. Eukaryot. Cell 8, 1051–1060.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baidya, S., Duran, R.M., Lohmar, J.M., Harris-Coward, P.Y., Cary, J.W., Hong, S.Y., Roze, L.V., Linz, J.E., and Calvo, A.M. 2014. VeA is associated with the response to oxidative stress in the aflatoxin producer Aspergillus flavus. Eukaryot. Cell 13, 1095–1103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barratt, R.W., Johnson, G.B., and Ogata, W.N. 1965. Wild-type and mutant stocks of Aspergillus nidulans. Genetics 52, 233–246.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bayram, O. and Braus, G.H. 2012. Coordination of secondary metabolism and development in fungi: The velvet family of regulatory proteins. FEMS Microbiol. Rev. 36, 1–24.

    Article  PubMed  CAS  Google Scholar 

  • Bayram, O., Krappmann, S., Ni, M., Bok, J.W., Helmstaedt, K., Valerius, O., Braus-Stromeyer, S., Kwon, N.J., Keller, N.P., Yu, J.H., et al. 2008. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320, 1504–1506.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, J.W. and Klich, M. 2003. Mycotoxins. Clin. Microbiol. Rev. 16, 497–516.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calvo, A.M. and Cary, J.W. 2015. Association of fungal secondary metabolism and sclerotial biology. Front. Microbiol. 6, 62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cary, J.W., OBrian, G.R., Nielsen, D.M., Nierman, W., Harris-Coward, P., Yu, J., Bhatnagar, D., Cleveland, T.E., Payne, G.A., and Calvo, A.M. 2007. Elucidation of veA-dependent genes associated with aflatoxin and sclerotial production in Aspergillus flavus by functional genomics. Appl. Microbiol. Biotechnol. 76, 1107–1118.

    Article  PubMed  CAS  Google Scholar 

  • Cary, J.W., Han, Z., Yin, Y., Lohmar, J.M., Shantappa, S., Harris-Coward, P.Y., Mack, B., Ehrlich, K.C., Wei, Q., Arroyo-Manzanares, N., et al. 2015. Transcriptome analysis of Aspergillus flavus reveals veA-dependent regulation of secondary metabolite gene clusters, including the novel aflavarin cluster. Eukaryot. Cell 14, 983–997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cary, J.W., Harris-Coward, P.Y., Ehrlich, K.C., Di Mavungu, J.D., Malysheva, S.V., De Saeger, S., Dowd, P.F., Shantappa, S., Martens, S.L., and Calvo, A.M. 2014. Functional characterization of a veA-dependent polyketide synthase gene in Aspergillus flavus necessary for the synthesis of asparasone, a sclerotium-specific pigment. Fungal Genet. Biol. 64, 25–35.

    Article  PubMed  CAS  Google Scholar 

  • Chang, P.K., Scharfenstein, L.L., Li, P., and Ehrlich, K.C. 2013. Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production. Fungal Genet. Biol. 58-59, 71–79.

    Article  PubMed  CAS  Google Scholar 

  • Denning, D.W. 1998. Invasive aspergillosis. Clin. Infect. Dis. 26, 781–803; quiz 804–805.

    Article  PubMed  CAS  Google Scholar 

  • Duran, R.M., Cary, J.W., and Calvo, A.M. 2007. Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation. Appl. Microbiol. Biotechnol. 73, 1158–1168.

    Article  PubMed  CAS  Google Scholar 

  • Duran, R.M., Gregersen, S., Smith, T.D., Bhetariya, P.J., Cary, J.W., Harris-Coward, P.Y., Mattison, C.P., Grimm, C., and Calvo, A.M. 2014. The role of Aspergillus flavus veA in the production of extracellular proteins during growth on starch substrates. Appl. Microbiol. Biotechnol. 98, 5081–5094.

    Article  PubMed  CAS  Google Scholar 

  • Ebbole, D.J. 2010. The conidium, pp. 577–590. In Cellular and molecular biology of filamentous fungi. American Society of Microbiology, Washington, DC, USA.

    Chapter  Google Scholar 

  • Gallagher, R.T. and Wilson, B.J. 1979. Aflatrem, the tremorgenic mycotoxin from Aspergillus flavus. Mycopathologia 66, 183–185.

    Article  PubMed  CAS  Google Scholar 

  • He, Z.M., Price, M.S., OBrian, G.R., Georgianna, D.R., and Payne, G.A. 2007. Improved protocols for functional analysis in the pathogenic fungus Aspergillus flavus. BMC Microbiol. 7, 104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hedayati, M.T., Pasqualotto, A.C., Warn, P.A., Bowyer, P., and Denning, D.W. 2007. Aspergillus flavus: Human pathogen, allergen and mycotoxin producer. Microbiology 153, 1677–1692.

    Article  PubMed  CAS  Google Scholar 

  • Hicks, J.K., Yu, J.H., Keller, N.P., and Adams, T.H. 1997. Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G alpha protein-dependent signaling pathway. EMBO J. 16, 4916–4923.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kensler, T.W., Roebuck, B.D., Wogan, G.N., and Groopman, J.D. 2011. Aflatoxin: A 50-year odyssey of mechanistic and translational toxicology. Toxicol. Sci. 120 Suppl 1, S28–48.

    Article  PubMed  CAS  Google Scholar 

  • Klich, M.A. 2007. Aspergillus flavus: The major producer of aflatoxin. Mol. Plant Pathol. 8, 713–722.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan, S., Manavathu, E.K., and Chandrasekar, P.H. 2009. Aspergillus flavus: An emerging non-fumigatus Aspergillus species of significance. Mycoses 52, 206–222.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, P., Mahato, D.K., Kamle, M., Mohanta, T.K., and Kang, S.G. 2016. Aflatoxins: A global concern for food safety, human health and their management. Front. Microbiol. 7, 2170.

    PubMed  Google Scholar 

  • Lan, N., Zhang, H., Hu, C., Wang, W., Calvo, A.M., Harris, S.D., Chen, S., and Li, S. 2014. Coordinated and distinct functions of velvet proteins in Fusarium verticillioides. Eukaryot. Cell 13, 909–918.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee, J., Myong, K., Kim, J.E., Kim, H.K., Yun, S.H., and Lee, Y.W. 2012. FgVelB globally regulates sexual reproduction, mycotoxin production and pathogenicity in the cereal pathogen Fusarium graminearum. Microbiology 158, 1723–1733.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M.K., Kwon, N.J., Lee, I.S., Jung, S., Kim, S.C., and Yu, J.H. 2016. Negative regulation and developmental competence in Aspergillus. Sci. Rep. 6, 28874.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee, M.K., Park, H.S., Han, K.H., Hong, S.B., and Yu, J.H. 2017. High molecular weight genomic DNA mini-prep for filamentous fungi. Fungal Genet. Biol. 104, 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Low, S.Y., Dannemiller, K., Yao, M., Yamamoto, N., and Peccia, J. 2011. The allergenicity of Aspergillus fumigatus conidia is influenced by growth temperature. Fungal Biol. 115, 625–632.

    Article  PubMed  Google Scholar 

  • Luk, K.C., Kobbe, B., and Townsend, J.M. 1977. Production of cyclopiazonic acid by Aspergillus flavus link. Appl. Environ. Microbiol. 33, 211–212.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Martin, J.F. 2017. Key role of LaeA and velvet complex proteins on expression of beta-lactam and PR-toxin genes in Penicillium chrysogenum: Cross-talk regulation of secondary metabolite pathways. J. Ind. Microbiol. Biotechnol. 44, 525–535.

    Article  PubMed  CAS  Google Scholar 

  • Merhej, J., Urban, M., Dufresne, M., Hammond-Kosack, K.E., Richard-Forget, F., and Barreau, C. 2012. The velvet gene, fgve1, affects fungal development and positively regulates trichothecene biosynthesis and pathogenicity in Fusarium graminearum. Mol. Plant Pathol. 13, 363–374.

    Article  PubMed  CAS  Google Scholar 

  • Michailides, T. and Thomidis, T. 2007. First report of Aspergillus flavus causing fruit rots of peaches in Greece. Plant Pathol. 56, 352–352.

    Article  Google Scholar 

  • Ni, M. and Yu, J.H. 2007. A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PLoS One 2, e970.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park, H.S., Bayram, O., Braus, G.H., Kim, S.C., and Yu, J.H. 2012a. Characterization of the velvet regulators in Aspergillus fumigatus. Mol. Microbiol. 86, 937–953.

    Article  PubMed  CAS  Google Scholar 

  • Park, H.S., Ni, M., Jeong, K.C., Kim, Y.H., and Yu, J.H. 2012b. The role, interaction and regulation of the velvet regulator VelB in Aspergillus nidulans. PLoS One 7, e45935.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park, H.S. and Yu, J.H. 2012. Multi-copy genetic screen in Aspergillus nidulans. Methods Mol. Biol. 944, 183–190.

    PubMed  CAS  Google Scholar 

  • Park, H.S. and Yu, J.H. 2017. Velvet regulators in Aspergillus spp. Microbiol. Biotechnol. Lett. 44, 409–419.

    Article  CAS  Google Scholar 

  • Park, H.S., Yu, Y.M., Lee, M.K., Maeng, P.J., Kim, S.C., and Yu, J.H. 2015. Velvet-mediated repression of beta-glucan synthesis in Aspergillus nidulans spores. Sci. Rep. 5, 10199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarikaya Bayram, O., Bayram, O., Valerius, O., Park, H.S., Irniger, S., Gerke, J., Ni, M., Han, K.H., Yu, J.H., and Braus, G.H. 2010. LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLoS Genet. 6, e1001226.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Veiga, T., Nijland, J.G., Driessen, A.J., Bovenberg, R.A., Touw, H., van den Berg, M.A., Pronk, J.T., and Daran, J.M. 2012. Impact of velvet complex on transcriptome and penicillin G production in glucose-limited chemostat cultures of a beta-lactam highproducing Penicillium chrysogenum strain. OMICS 16, 320–333.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woloshuk, C.P. and Shim, W.B. 2013. Aflatoxins, fumonisins, and trichothecenes: A convergence of knowledge. FEMS Microbiol. Rev. 37, 94–109.

    Article  PubMed  CAS  Google Scholar 

  • Wu, M.Y., Mead, M.E., Kim, S.C., Rokas, A., and Yu, J.H. 2017. WetA bridges cellular and chemical development in Aspergillus flavus. PLoS One 12, e0179571.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu, J.H., Hamari, Z., Han, K.H., Seo, J.A., Reyes-Dominguez, Y., and Scazzocchio, C. 2004. Double-joint PCR: A PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal. Genet. Biol. 41, 973–981.

    Article  PubMed  CAS  Google Scholar 

  • Yu, J.H. and Keller, N. 2005. Regulation of secondary metabolism in filamentous fungi. Annu. Rev. Phytopathol. 43, 437–458.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae-Hyuk Yu or Hee-Soo Park.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eom, TJ., Moon, H., Yu, JH. et al. Characterization of the velvet regulators in Aspergillus flavus. J Microbiol. 56, 893–901 (2018). https://doi.org/10.1007/s12275-018-8417-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-018-8417-4

Keywords

Navigation