Skip to main content
Log in

Effects of dietary poly-β-hydroxybutyrate (PHB) on microbiota composition and the mTOR signaling pathway in the intestines of litopenaeus vannamei

  • Microbial Ecology and Environmental Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Poly-β-hydroxybutyrate (PHB) is a natural polymer of the short chain fatty acid β-hydroxybutyrate, which acts as a microbial control agent. The mammalian target of the rapamycin (mTOR) signaling pathway plays a crucial role in intestine inflammation and epithelial morphogenesis. In this study, we examined the composition of intestine microbiota, and mTOR signaling-related gene expression in Pacific white shrimp Litopenaeus vannamei fed diets containing different levels of PHB: 0% (Control), 1% (PHB1), 3% (PHB3), and 5% (PHB5) (w/w) for 35 days. High-throughput sequencing analysis revealed that dietary PHB altered the composition and diversity of intestine microbiota, and that the microbiota diversity decreased with the increasing doses of PHB. Specifically, dietary PHB increased the relative abundance of Proteobacteria and Tenericutes in the PHB1 and PHB5 groups, respectively, and increased that of Gammaproteobacteria in the three PHB groups. Alternatively, PHB decreased Alphaproteobacteria in the PHB3 and PHB5 groups. At the genus level, dietary PHB increased the abundance of beneficial bacteria, such as Bacillus, Lactobacillus, Lactococcus, Clostridium, and Bdellovibrio. The relative mRNA expression levels of the mTOR signaling-related genes TOR, 4E-BP, eIF4E1α, and eIF4E2 all increased in the three PHB treatment groups. These results revealed that dietary PHB supplementation had a beneficial effect on intestine health of L. vannamei by modulating the composition of intestine microbiota and activating mTOR signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abuhagr, A.M., MacLea, K.S., Chang, E.S., and Mykles, D.L. 2014. Mechanistic target of rapamycin (mTOR) signaling genes in decapod crustaceans: cloning and tissue expression of mTOR, Akt, Rheb, and p70 S6 kinase in the green crab, Carcinus maenas, and blackback land crab, Gecarcinus lateralis. Comp. Biochem. Physiol. A. 168, 25–39.

    Article  CAS  Google Scholar 

  • Avruch, J., Hara, K., Lin, Y., Liu, M., Long, X., Ortiz-Vega, S., and Yonezawa, K. 2006. Insulin and amino-acid regulation of mTOR signaling and kinase activity through the Rheb GTPase. Oncogene 25, 6361–6372.

    Article  CAS  PubMed  Google Scholar 

  • Baruah, K., Huy, T.T., Norouzitallab, P., Niu, Y.F., Gupta, S.K., De Schryver, P., and Bossier, P. 2015. Probing the protective mechanism of poly-β-hydroxybutyrate against vibriosis by using gnotobiotic Artemia franciscana and Vibrio campbellii as hostpathogen model. Sci. Rep. 5, 9427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becattini, S., Taur, Y., and Pamer, E.G. 2016. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol. Med. 22, 458–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, H.P., He, S., Wang, H.C., Hou, S.L., Lu, L.Q., and Yang, X.L. 2012. Bdellovibrios, potential biocontrol bacteria against pathogenic Aeromonas hydrophila. Vet. Microbiol. 154, 413–418.

    Article  PubMed  Google Scholar 

  • Dai, W., Panserat, S., Mennigen, J.A., Terrier, F., Dias, K., Seiliez, I., and Skiba-Cassy, S. 2013. Post-prandial regulation of hepatic glucokinase and lipogenesis requires the activation of TORC1 signalling in rainbow trout (Oncorhynchus mykiss). J. Exp. Biol. 216, 4483–4492.

    Article  CAS  PubMed  Google Scholar 

  • Daniel, H., Gholami, A.M., Berry, D., Desmarchelier, C., Hahne, H., Loh, G., Mondot, S., Lepage, P., Rothballer, M., Walker, A., et al. 2014. High-fat diet alters gut microbiota physiology in mice. ISME J. 8, 295–308.

    Article  CAS  PubMed  Google Scholar 

  • Defoirdt, T., Boon, N., Sorgeloos, P., Verstraete, W., and Bossier, P. 2007a. Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. Trends Biotechnol. 25, 472–479.

    Article  CAS  PubMed  Google Scholar 

  • Defoirdt, T., Halet, D., Vervaeren, H., Boon, N., Wiele, T.V., Sorgeloos, P., Bossier, P., and Verstraete, W. 2007b. The bacterial storage compound poly-β-hydroxybutyrate protects Artemia franciscana from pathogenic Vibrio campbellii. Environ. Microbiol. 9, 445–452.

    Article  CAS  PubMed  Google Scholar 

  • Delzenne, N., Daubioul, C., Neyrinck, A., Lasa, M., and Taper, H. 2002. Inulin and oligofructose modulated lipid metabolism in animals: review of biochemical events and future prospects. Br. J. Nutr. 87, 255–259.

    Article  Google Scholar 

  • Delzenne, N. and Williams, C. 2002. Prebiotics and lipid metabolism. Curr. Opin. Lipidol. 13, 61–67.

    Article  CAS  PubMed  Google Scholar 

  • De Schryver, P., Sinha, A.K., Kunwar, P.S., Baruah, K., Verstraete, W., Boon, N., De Boeck, G., and Bossier, P. 2010. Poly-β-hydroxybutyrate (PHB) increases growth performance and intestinal bacterial range-weighted richness in juvenile European sea bass, Dicentrarchus labrax. Appl. Microbiol. Biot. 86, 1535–1541.

    Article  CAS  Google Scholar 

  • Duan, Y.F., Zhang, Y., Dong, H.B., Wang, Y., Zheng, X.T., and Zhang, J.S. 2017a. Effect of dietary Clostridium butyricum on growth, intestine health status and resistance to ammonia stress in Pacific white shrimp Litopenaeus vannamei. Fish Shellfish Immunol. 65, 25–33.

    Article  CAS  PubMed  Google Scholar 

  • Duan, Y.F., Zhang, Y., Dong, H.B., Zheng, X.T., Wang, Y., Li, H., Liu, Q.S., and Zhang, J.S. 2017b. Effect of dietary poly-β-hydroxybutyrate (PHB) on growth performance, intestinal health status and body composition of Pacific white shrimp Litopenaeus vannamei (Boone, 1931). Fish Shellfish Immunol. 60, 520–528.

    Article  CAS  PubMed  Google Scholar 

  • Edgar, R.C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998.

    Article  CAS  PubMed  Google Scholar 

  • Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., and Knight, R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flegel, T.W. 2012. Historic emergence, impact and current status of shrimp pathogens in Asia. J. Invertebr. Pathol. 110, 166–173.

    Article  PubMed  Google Scholar 

  • Harzevili, A.R.S., Van Duffel, H., Dhert, P., Swings, J., and Sorgeloos, P. 1998. Use of a potential probiotic Lactococcus lactis AR21 strain for the enhancement of growth in the rotifer Brachionus plicatilis (Muller). Aquac. Res. 29, 411–417.

    Google Scholar 

  • Hismiogullari, S.E., Hismiogullari, A.A., Sahin, F., Oner, E.T., Yenice, S., and Karasartova, D. 2008. Investigation of antibacterial and cytotoxic effects of organic acids including ascorbic acid, lactic acid and acetic acids on mammalian cells. J. Anim. Vet. Adv. 7, 681–684.

    CAS  Google Scholar 

  • Hsieh, Y.C., Chen, Y.M., Li, C.Y., Chang, Y.H., Liang, S.Y., Lin, S.Y., Lin, C.Y., Chang, S.H., Wang, Y.J., Khoo, K.H., et al. 2015. To complete its replication cycle, a shrimp virus changes the population of long chain fatty acids during infection via the PI3K-AktmTOR-HIF1a pathway. Dev. Comp. Immunol. 53, 85–95.

    Article  CAS  PubMed  Google Scholar 

  • Iwanek, J.D., Zagrodzki, P., Wozniakiewicz, M., Wozniakiewicz, A., Wcisło, M.Z., Winnicka, D., and Paśko, P. 2016. Procedure optimization for extracting short-chain fatty acids from human faeces. J. Pharm. Biomed. 124, 337–340.

    Article  Google Scholar 

  • Joshi, J., Srisala, J., Truong, V.H., Chen, I.T., Nuangsaeng, B., Suthienkul, O., Lo, C.F., Flegel, T.W., Sritunyalucksana, K., and Thitamadee, S. 2014. Variation in Vibrio parahaemolyticus isolates from a single Thai shrimp farm experiencing an outbreak of acute hepatopancreatic necrosis disease (AHPND). Aquaculture 428, 297–302.

    Article  Google Scholar 

  • Kim, M., Qie, Y.Q., Park, J., and Kim, C.H. 2016. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe 20, 202–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh, A., De, V.F., Kovatcheva-Datchary, P., and Bäckhed, F. 2016. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345.

    Article  CAS  PubMed  Google Scholar 

  • Laplante, M. and Sabatini, D.M. 2009. An emerging role of mTOR in lipid biosynthesis. Curr. Biol. 19, R1046–R1052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laplante, M. and Sabatini, D.M. 2012. mTOR Signaling. Cold Spring Harb. Perspect. Biol. 4, a011593.

    Google Scholar 

  • Li, J., Tan, B., and Mai, K. 2009. Dietary probiotic Bacillus OJ and isomaltooligosaccharides influence the intestine microbial populations, immune responses and resistance to white spot syndrome virus in shrimp (Litopenaeus vannamei). Aquaculture 291, 35–40.

    Article  CAS  Google Scholar 

  • Li, K., Zheng, T., Tian, Y., Xi, F., Yuan, J., Zhang, G., and Hong, H. 2007. Beneficial effects of Bacillus licheniformis on the intestinal microflora and immunity of the white shrimp, Litopenaeus vannamei. Biotechnol. Lett. 29, 525–530.

    Article  CAS  PubMed  Google Scholar 

  • Liu, S.Q. 2015. The role of mTOR pathway in intestinal mucosal immune stress of broilers induced by LPS. PhD Thesis, Shandong Agricultural University, Taian, P. R. China.

    Google Scholar 

  • Liu, Y., De Schryver, P., Delsen, B.V., Maignien, L., Boon, N., Sorgeloos, P., Verstraete, W., Bossier, P., and Defoirdt, T. 2010. PHB degrading bacteria isolated from the gastrointestinal tract of aquatic animals as protective actors against luminescent vibriosis. FEMS Microbiol. Ecol. 74, 196–204.

    Article  CAS  PubMed  Google Scholar 

  • Long, X., Spycher, C., Han, Z.S., Rose, A.M., Muller, F., and Avruch, J. 2002. TOR deficiency in C. elegans causes developmental arrest and intestinal atrophy by inhibition of mRNA translation. Curr. Biol. 12, 1448–1461.

    Article  CAS  PubMed  Google Scholar 

  • Luo, J.B., Feng, L., Jiang, W.D., Liu, Y., Wu, P., Jiang, J., Kuang, S.Y., Tang, L., Zhang, Y.A., and Zhou, X.Q. 2014. The impaired intestinal mucosal immune system by valine deficiency for young grass carp (Ctenopharyngodon idella) is associated with decreasing immune status and regulating tight junction proteins transcript abundance in the intestine. Fish Shellfish Immunol. 40, 197–207.

    Article  CAS  PubMed  Google Scholar 

  • Makky, K., Tekiela, J., and Mayer, A.N. 2007. Target of rapamycin (TOR) signaling controls epithelial morphogenesis in the vertebrate intestine. Dev. Biol. 303, 501–513.

    Article  CAS  PubMed  Google Scholar 

  • Najdegerami, E.H., Baruah, K., Shiri, A., Rekecki, A., den Broeck, W.V., Sorgeloos, P., Boon, N., Bossier, P., and De Schryver, P. 2015. Siberian sturgeon (Acipenser baerii) larvae fed Artemia nauplii enriched with poly-β-hydroxybutyrate (PHB): effect on growth performance, body composition, digestive enzymes, gut microbial community, gut histology and stress tests. Aquac. Res. 46, 801–812.

    Article  CAS  Google Scholar 

  • Najdegerami, E.H., Tran, T.N., Defoirdt, T., Marzorati, M., Sorgeloos, P., Boon, N., and Bossier, P. 2012. Effects of poly-β-hydroxybutyrate (PHB) on Siberian sturgeon (Acipenser baerii) fingerlings performance and its gastrointestinal tract microbial community. FEMS Microbiol. Ecol. 79, 25–33.

    Article  CAS  PubMed  Google Scholar 

  • Nhan, D.T., Wille, M., De Schryver, P., Defoirdt, T., Bossiera, P., and Sorgeloos, P. 2010. The effect of poly-β-hydroxybuty rate on larviculture of the giant fresh water prawn Macrobrachium rosenbergii. Aquaculture 302, 76–81.

    Article  CAS  Google Scholar 

  • Ren, M., Habte-Tsion, H.M., Liu, B., Miao, L., Ge, X., Xie, J., Liang, H., Zhou, Q., and Pan, L. 2015. Dietary leucine level affects growth performance, whole body composition, plasma parameters and relative expression of TOR and TNF-α in juvenile blunt snout bream, Megalobrama amblycephala. Aquaculture 448, 162–168.

    Article  CAS  Google Scholar 

  • Roeselers, G., Mittge, E.K., Stephens, W.Z., Parichy, D.M., Cavanaugh, C.M., Guillemin, K., and Rawls, J.F. 2011. Evidence for a core gut microbiota in the zebrafish. ISME J. 5, 1595–1608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas-Morales, P., Tapia, E., and Pedraza-Chaverri, J. 2016. β-Hydroxybutyrate: a signaling metabolite in starvation response? Cell. Signal. 28, 917–923.

    Article  CAS  PubMed  Google Scholar 

  • Rungrassamee, W., Klanchui, A., Chaiyapechara, S., Maibunkaew, S., Tangphatsornruang, S., Jiravanichpaisal, P., and Karoonuthaisiri, N. 2013. Bacterial population in intestines of the black tiger shrimp (Penaeus monodon) under different growth stages. PLoS One 8, e60802.

    Article  Google Scholar 

  • Rungrassamee, W., Klanchui, A., Maibunkaew, S., Chaiyapechara, S., Jiravanichpaisal, P., and Karoonuthaisiri, N. 2014. Characterization of intestinal bacteria in wild and domesticated adult black tiger shrimp (Penaeus monodon). PLoS One 9, e91853.

    Article  Google Scholar 

  • Rungrassamee, W., Klanchui, A., Maibunkaew, S., and Karoonuthaisiri, N. 2016. Bacterial dynamics in intestines of the black tiger shrimp and the Pacific white shrimp during Vibrio harveyi exposure. J. Invertebr. Pathol. 133, 12–19.

    Article  CAS  PubMed  Google Scholar 

  • Sapkota, A., Sapkota, A.R., Kucharski, M., Burke, J., McKenzie, S., Walker, P., and Lawrence, R. 2008. Aquaculture practices and potential human health risks: Current knowledge and future priorities. Environ. Int. 34, 1215–1226.

    Article  PubMed  Google Scholar 

  • Suguna, P., Binuramesh, C., Abirami, P., Saranya, V., Poornima, K., Rajeswari, V., and Shenbagarathai, R. 2014. Immunostimulation by poly-β hydroxybutyrate-hydroxyvalerate (PHBHV) from Bacillus thuringiensis in Oreochromis mossambicus. Fish Shellfish Immunol. 36, 90–97.

    Article  CAS  PubMed  Google Scholar 

  • Sullam, K.E., Essinger, S.D., Lozupone, C.A., O’Connor, M.P., Rosen, G.L., Knight, R., Kilham, S.S., and Russell, J.A. 2012. Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol. Ecol. 21, 3363–3378.

    Article  PubMed  Google Scholar 

  • Tang, L., Feng, L., Sun, C.Y., Chen, G.F., Jiang, W.D., Hu, K., Liu, Y., Jiang, J., Li, S.H., Kuang, S.Y., et al. 2013. Effect of tryptophan on growth, intestinal enzyme activities and TOR gene expression in juvenile Jian carp (Cyprinus carpio var. Jian): Studies in vivo and in vitro. Aquaculture 412, 23–33.

    Google Scholar 

  • Tourtip, S. 2000. Histology, ultrastructure and molecular biology of a new microsporidium infecting the black tiger shrimp Penaeus monodon. PhD Thesis, Mahidol University, Bangkok, Thailand.

    Google Scholar 

  • Tourtip, S., Wongtripop, S., Stentiford, G.D., Bateman, K.S., Sriurairatana, S., Chavadej, J., Sritunyalucksana, K., and Withyachumnarnkul, B. 2009. Enterocytozoon hepatopenaei sp. nov. (Microsporida: Enterocytozoonidae), a parasite of the black tiger shrimp Penaeus monodon (Decapoda: Penaeidae): fine structure and phylogenetic relationships. J. Invertebr. Pathol. 102, 21–29.

    Article  CAS  PubMed  Google Scholar 

  • Wu, M., Lu, S., Wu, X., Jiang, S., Luo, Y., Yao, W., and Jin, Z. 2017. Effects of dietary amino acid patterns on growth, feed utilization and hepatic IGF-I, TOR gene expression levels of hybrid grouper (Epinephelus fuscoguttatus ♀× Epinephelus lanceolatus ♂) juveniles. Aquaculture 468, 508–514.

    Article  CAS  Google Scholar 

  • Wu, S.G., Gao, T.H., Zheng, Y.Z., Wang, W.W., Cheng, Y.Y., and Wang, G.T. 2010. Microbial diversity of intestinal contents and mucus in yellow catfish (Pelteobagrus fulvidraco). Aquaculture 303, 1–7.

    Article  CAS  Google Scholar 

  • Wu, S., Wang, G., Angert, E.R., Wang, W., Li, W., and Zou, H. 2012. Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS One 7, e30440.

    Article  Google Scholar 

  • Xin, F. 2016. Gene cloning and functional study on the important genes of mTOR signaling in Litopenaeus vannamei. PhD Thesis, University of Chinese Academy of Sciences, Qingdao, P. R. China.

    Google Scholar 

  • Zhang, M.L., Sun, Y.H., Chen, K., Yu, N., Zhou, Z.G., Chen, L.Q., Du, Z.Y., and Li, E.C. 2014. Characterization of the intestinal microbiota in Pacific white shrimp, Litopenaeus vannamei, fed diets with different lipid sources. Aquaculture 434, 449–455.

    Article  CAS  Google Scholar 

  • Zheng, X.T., Duan, Y.F., Dong, H.B., and Zhang, J.S. 2017. Effects of dietary Lactobacillus plantarum in different treatments on growth performance and immune gene expression of white shrimp Litopenaeus vannamei under normal condition and stress of acute low salinity. Fish Shellfish Immunol. 62, 195–201.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiasong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Zhang, Y., Dong, H. et al. Effects of dietary poly-β-hydroxybutyrate (PHB) on microbiota composition and the mTOR signaling pathway in the intestines of litopenaeus vannamei. J Microbiol. 55, 946–954 (2017). https://doi.org/10.1007/s12275-017-7273-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-017-7273-y

Keywords

Navigation