Skip to main content
Log in

Cecal microbiome divergence of broiler chickens by sex and body weight

  • Microbial Ecology and Environmental Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The divergence of gut bacterial community on broiler chickens has been reported as potentially possible keys to enhancing nutrient absorption, immune systems, and increasing poultry health and performance. Thus, we compared cecal bacterial communities and functional predictions by sex and body weight regarding the association between cecal microbiota and chicken growth performance. In this study, a total of 12 male and 12 female 1-day-old broiler chickens were raised for 35 days in 2 separate cages. Chickens were divided into 3 subgroups depending on body weight (low, medium, and high) by each sex. We compared chicken cecal microbiota compositions and its predictive functions by sex and body weight difference. We found that bacterial 16S rRNA genes were classified as 3 major phyla (Bacteroidetes, Firmicutes, and Proteobacteria), accounting for > 98% of the total bacterial community. The profiling of different bacterial taxa and predictive metagenome functions derived from 16S rRNA genes were performed over chicken sex and bodyweight. Male chickens were related to the enrichment of Bacteroides while female chickens were to the enrichment of Clostridium and Shigella. Male chickens with high body weight were associated with the enrichment of Faecalibacterium and Shuttleworthia. Carbohydrate and lipid metabolisms were suggested as candidate functions for weight gain in the males. This suggests that the variation of cecal bacterial communities and their functions by sex and body weight may be associated with the differences in the growth potentials of broiler chickens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bokulich., N.A., Rideout, J.R., Kopylova, E., Bolyen, E., Patnode, J., Ellett, Z., McDonald, D., Wolfe, B., Maurice, C.F., Dutton, R.J., et al. 2015. A standardlized, extensible framework for optimizing classification improves marker-gene taxonomic assignments. PeerJ. Prepr. 230313, 1–17.

    Google Scholar 

  • Burt, D.W. 2007. Emergence of the chicken as a model organism: implications for agriculture and biology. Poult. Sci. 86, 1460–1471.

    Article  CAS  PubMed  Google Scholar 

  • Chang, Q., Luan, Y., and Sun, F. 2011. Variance adjusted weighted UniFrac: a powerful beta diversity measure for comparing communities based on phylogeny. BMC Bioinformatics 12, 118.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho, I., Yamanishi, S., Cox, L., Methé, B.A., Zavadil, J., Li, K., Gao, Z., Mahana, D., Raju, K., Teitler, I., et al. 2012. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488, 621–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, J.H., Kim, G.B., and Cha, C.J. 2014. Spatial heterogeneity and stability of bacterial community in the gastrointestinal tracts of broiler chickens. Poult. Sci. 93, 1942–1950.

    Article  CAS  PubMed  Google Scholar 

  • Choi, K.Y., Lee, T.K., and Sul, W.J. 2015. Metagenomic analysis of chicken gut microbiota for improving metabolism and health of chickens - A review. Asian-Australasian J. Anim. Sci. 28, 1217–1225.

    Article  CAS  Google Scholar 

  • Clarke, S.F., Murphy, E.F., Nilaweera, K., Ross, P.R., Shanahan, F., O’Toole, P.W., and Cotter, P.D. 2012. The gut microbiota and its relationship to diet and obesity: new insights. Gut Microbes 3, 186–202.

    Article  PubMed  PubMed Central  Google Scholar 

  • Conterno, L., Fava, F., Viola, R., and Tuohy, K.M. 2011. Obesity and the gut microbiota: Does up-regulating colonic fermentation protect against obesity and metabolic disease? Genes Nutr. 6, 241–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J.B., Massart, S., Collini, S., Pieraccini, G., and Lionetti, P. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA 107, 14691–14696.

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgar, R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461.

    Article  CAS  PubMed  Google Scholar 

  • Eren, A.M., Vineis, J.H., Morrison, H.G., and Sogin, M.L. 2013. A filtering method to generate high quality short reads using illumina paired-end technology. PLoS One 8, e66643.

    Article  Google Scholar 

  • Faith, D.P. and Baker, A.M. 2006. Phylogenetic diversity (PD) and biodiversity conservation: some bioinformatics challenges. Evol. Bioinform. 2, 121–128.

    Google Scholar 

  • Fei, N. and Zhao, L. 2013. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J. 7, 880–884.

    Article  CAS  PubMed  Google Scholar 

  • Guo, X., Xia, X., Tang, R., Zhou, J., Zhao, H., and Wang, K. 2008. Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Lett. Appl. Microbiol. 47, 367–373.

    Article  CAS  PubMed  Google Scholar 

  • Kogut, M.H. 2013. The gut microbiota and host innate immunity: Regulators of host metabolism and metabolic diseases in poultry? J. Appl. Poult. Res. 22, 637–646.

    Article  CAS  Google Scholar 

  • Lan, Y., Verstegen, M., Tamminga, S., and Williams, B.A. 2005. The role of the commensal gut microbial community in broiler chickens. Worlds Poult. Sci. J. 61, 95–104.

    Article  Google Scholar 

  • Langille, M., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., Reyes, J., Clemente, J., Burkepile, D., Vega Thurber, R., Knight, R., et al. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ley, R.E., Turnbaugh, P.J., Klein, S., and Gordon, J.I. 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023.

    Article  CAS  PubMed  Google Scholar 

  • Lozupone, C. and Knight, R. 2005. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lumpkins, B.S., Batal, A.B., and Lee, M. 2008. The effect of gender on the bacterial community in the gastrointestinal tract of broilers. Poult. Sci. 87, 964–967.

    Article  CAS  PubMed  Google Scholar 

  • McDonald, D., Price, M.N., Goodrich, J., Nawrocki, E.P., DeSantis, T.Z., Probst, A., Andersen, G.L., Knight, R., and Hugenholtz, P. 2012. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618.

    Article  CAS  PubMed  Google Scholar 

  • Neufeld, J.D. and Mohn, W.W. 2005. Unexpectedly high bacterial diversity in arctic tundra relative to boreal forest soils, revealed by serial analysis of ribosomal sequence tags. Appl. Environ. Microbiol. 71, 5710–5718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikiforova, V.J., Giesbertz, P., Wiemer, J., Bethan, B., Looser, R., Liebenberg, V., Ruiz Noppinger, P., Daniel, H., and Rein, D. 2014. Glyoxylate, a new marker metabolite of type 2 diabetes. J. Diabetes Res. 2014, 1–9.

    Article  Google Scholar 

  • Niu, Q., Li, P., Hao, S., Zhang, Y., Kim, S.W., Li, H., Ma, X., Gao, S., He, L., Wu, W., et al. 2015. Dynamic distribution of the gut microbiota and the relationship with apparent crude fiber digestibility and growth stages in pigs. Sci. Rep. 5, 9938.

    Google Scholar 

  • Okeke, F., Roland, B.C., and Mullin, G.E. 2014. The role of the gut microbiome in the pathogenesis and treatment of obesity. Glob. Adv. Heal. Med. 3, 44–57.

    Article  Google Scholar 

  • Pourabedin, M. and Zhao, X. 2015. Prebiotics and gut microbiota in chickens. FEMS Microbiol. Lett. 362, 1–8.

    Article  Google Scholar 

  • R Developement Core Team. 2015. R: A language and environment for statistical computing. R Found. Stat. Comput. 1, 409.

  • Rinttilä, T. and Apajalahti, J. 2013. Intestinal microbiota and metabolites–Implications for broiler chicken health and performance. J. Appl. Poult Res. 22, 647–658.

    Article  Google Scholar 

  • Schumacher, M., Mattern, C., Ghoumari, A., Oudinet, J.P., Liere, P., Labombarda, F., Sitruk-Ware, R., De Nicola, A.F., and Guennoun, R. 2014. Revisiting the roles of progesterone and allopregnanolone in the nervous system: Resurgence of the progesterone receptors. Prog. Neurobiol. 113, 6–39.

    Article  CAS  PubMed  Google Scholar 

  • Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., and Huttenhower, C. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharpton, T.J. 2014. An introduction to the analysis of shotgun metagenomic data. Front. Plant Sci. 5, 209.

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh, P., Karimi, A., Devendra, K., Waldroup, P.W., Cho, K.K., and Kwon, Y.M. 2013. Influence of penicillin on microbial diversity of the cecal microbiota in broiler chickens. Poult. Sci. 92, 272–276.

    Article  PubMed  Google Scholar 

  • Singla, P., Bardoloi, A., and Parkash, A.A. 2010. Metabolic effects of obesity: A review. World J. Diabetes 1, 76–88.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tremaroli, V. and Bäckhed, F. 2012. Functional interactions between the gut microbiota and host metabolism. Nature 489, 242–249.

    Article  CAS  PubMed  Google Scholar 

  • Torok, V.A., Dyson, C., McKay, A., and Ophel-Keller, K. 2013. Quantitative molecular assays for evaluating changes in broiler gut microbiota linked with diet and performance. Anim. Prod. Sci. 53, 1260–1268.

    CAS  Google Scholar 

  • Torok, V.A., Hughes, R.J., Mikkelsen, L.L., Perez-Maldonado, R., Balding, K., MacAlpine, R., Percy, N.J., and Ophel-Keller, K. 2011. Identification and characterization of potential performancerelated gut microbiotas in broiler chickens across various feeding trials. Appl. Environ. Microbiol. 77, 5868–5878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R., and Gordon, J.I. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031.

    Article  PubMed  Google Scholar 

  • Voreades, N., Kozil, A., and Weir, T.L. 2014. Diet and the development of the human intestinal microbiome. Front. Microbiol. 5, 1–9.

    Article  Google Scholar 

  • Wei, S., Morrison, M., and Yu, Z. 2013. Bacterial census of poultry intestinal microbiome. Poult. Sci. 92, 671–683.

    Article  CAS  PubMed  Google Scholar 

  • Wise, M.G. and Siragusa, G.R. 2007. Quantitative analysis of the intestinal bacterial community in one- to three-week-old commercially reared broiler chickens fed conventional or antibioticfree vegetable-based diets. J. Appl. Microbiol. 102, 1138–1149.

    CAS  PubMed  Google Scholar 

  • Zhao, L., Wang, G., Siegel, P., He, C., Wang, H., Zhao, W., Zhai, Z., Tian, F., Zhao, J., Zhang, H., et al. 2013. Quantitative genetic background of the host influences gut microbiomes in chickens. Sci. Rep. 3, 1163.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Yong Kil or Woo Jun Sul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, KC., Kil, D.Y. & Sul, W.J. Cecal microbiome divergence of broiler chickens by sex and body weight. J Microbiol. 55, 939–945 (2017). https://doi.org/10.1007/s12275-017-7202-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-017-7202-0

Keywords

Navigation