Skip to main content
Log in

Azohydromonas riparia sp. nov. and Azohydromonas ureilytica sp. nov. isolated from a riverside soil in South Korea

  • Microbial Systematics and Evolutionary Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

White and pale yellow coloured bacteria were isolated from the riverside soil, Daejeon, South Korea, and were designated UCM-11T, UCM-F25, and UCM-80T. We found that all strains were able to reduce nitrate, and the cells were aerobic and motile. The DNA G+C contents of UCM-11T, UCM-F25, and UCM-80T were between 68.9 to 71.2 mol% and the main ubiquinone was observed as Q-8. Based on16S rRNA gene sequences, strains UCM-11T and UCM-F25 were found to closely match with Azohydromonas australica IAM 12664T (98.48–98.55%), and the strain UCM-80T was the closest match with Azohydromonas lata IAM 12599T (98.34%). The presence of summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C16:0, summed feature 8 (C18:1 ω7c and/or C18:1 ω6c) as well as twokinds of hydroxyfatty acids consisting of C10:0 3-OH and C12:0 2-OH, and branched fatty acids containing C16:0 iso and C17:0 cyclo were detected in all the strains. Phosphatidylethanolamine was a major polar lipid. DNA–DNA relatedness confirmed UCM-11T, UCM-F25 and UCM-80T as novel members of the genus Azohydromonas. Based on the morphological, physiological, biochemical and genotypic characteristics, we suggest that strains UCM-11T, UCM-F25, and UCM-80T represent novel species within the genus Azohydromonas. The names Azohydromonas riparia sp. nov., and Azohydromonas ureilytica sp. nov. are proposed for the type strains UCM-11T (=KACC 18570T =NBRC 111646T) and UCM-80T (=KACC 18576T =NBRC 111658T), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berlanga, M., Montero, M.T., Fernández-Borrell, J., and Guerrero, R. 2006. Rapid spectrofluorometric screening of poly-hydroxyalkanoate-producing bacteria from microbial mats. Int. Microbiol. 9, 95–102.

    CAS  PubMed  Google Scholar 

  • Collins, M.D. and Goodfellow, M. 1979. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J. Appl. Bacteriol. 41, 81–95.

    Google Scholar 

  • Collins, M.D., Pirouz, T., Goodfellow, M., and Minnikin, D.E. 1977. Distribution of menaquinones in actinomycetes and corynebacteria. J. Gen. Microbiol. 100, 221–230.

    Article  CAS  PubMed  Google Scholar 

  • da Costa, M.S., Albuquerque, L., Nobre, M.F., and Wait, R. 2011. The extraction and identification of respiratory lipoquinones of Prokaryotes and their use in taxonomy. In Rainey, F. and Oren, A. (eds.), Methods in microbiology, vol. 38, 1st edn, pp. 197–206. Academic Press, Elsevier’s Science & Technology Rights Department in Oxford, UK.

    Google Scholar 

  • Ezaki, T., Hashimoto, Y., and Yabuuchi, E. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39, 224–229.

    Article  Google Scholar 

  • Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.

    Article  Google Scholar 

  • Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.

    Article  Google Scholar 

  • Frank, J.A., Reich, C.I., Sharma, S., Weisbaum, J.S., Wilson, B.A., and Olsen, G.J. 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 74, 2461–2470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.

    CAS  Google Scholar 

  • Jacin, H. and Mishkin, A.R. 1965. Separation of carbohydrates on borate-impregnated silica gel G plates. J. Chromatogr. A 18, 170–173.

    Article  CAS  Google Scholar 

  • Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Komagata, K. and Suzuki, K.I. 1987. Lipids and cell wall analysis in bacterial systematics. Methods Microbiol. 19, 161–207.

    Article  CAS  Google Scholar 

  • Krieg, N.R. and Padgett, P.J. 2011. Phenotypic and physiological characterization methods in Methods in microbiology, vol. 38, 1st edn, pp. 15–61. In Rainey, F. and Oren, A. (eds.). Academic Press, Elsevier’s Science & Technology Rights Department in Oxford, UK.

  • Lányi. 1987. Classical and rapid identification methods for medically important bacteria. In Colwell, R.R. and Grigorova, R. (eds.), Methods in microbiology, vol. 19, pp. 1–69. Academic Press limited, British Library Cataloguing in Publication Data.

    Google Scholar 

  • Malik, K.A., Jung, C., Claus, D., and Schlegel, H.G. 1981. Nitrogen fixation by the hydrogen-oxidizing bacterium Alcaligenes latus. Arch. Microbiol. 129, 254–256.

    Article  CAS  Google Scholar 

  • Mesbah, M., Premachandran, U., and Whitman, W.B. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39, 159–167.

    Article  CAS  Google Scholar 

  • Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.

    Article  CAS  Google Scholar 

  • Palleroni, N.J. and Palleroni, A. 1978. Alcaligenes latus, a new species of hydrogen-utilizing bacteria. Int. J. Syst. Bacteriol. 28, 416–424.

    Article  Google Scholar 

  • Pitcher, D.G., Saunders, N.A., and Owen, R.J. 1989. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett. Appl. Microbiol. 8, 151–156.

    Article  CAS  Google Scholar 

  • Rainey, F.A. 2011. How to describe new species of Prokaryotes. In Rainey, F. and Oren, A. (eds.) Methods in microbiology, vol. 38, 1st edn, pp. 7–15. Academic Press, Elsevier’s Science & Technology Rights Department in Oxford, UK.

    Google Scholar 

  • Rohde, M. 2011. Microscopy. In Rainey, F. and Oren, A. (eds.), Methods in microbiology, vol. 38, 1st edn, pp. 61–100. Academic Press, Elsevier’s Science & Technology Rights Department in Oxford, UK.

    Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc., Newark, DE, USA.

    Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tindall, B.J., Rosselló-Móra, R., Busse, H.J., Ludwig, W., and Kämpfer, P. 2010. Notes on the characterization of prokaryote strains for taxonomic purposes. Int. J. Syst. Evol. Microbiol. 60, 249–266.

    Article  CAS  PubMed  Google Scholar 

  • Tindall, B.J., Sikorski, J., Smibert, R.A., and Krieg, N.R. 2007. Phenotypic characterization and the principles of comparative systematics. In Beveridge, T.J., Breznak, J.A., Marzluf, G.A., Schmidt, T.M., and Snyder, L.R. (eds.), The methods for general and molecular microbiology, 3rd edn, pp. 330–394. ASM press, Washington, DC, USA.

    Chapter  Google Scholar 

  • Tschech, A. and Pfennig, N. 1984. Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch. Microbiol. 137, 163–167.

    Article  CAS  Google Scholar 

  • Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moor, L.H., Moore, W.E.C., Murray, R.G.E., et al. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464.

    Article  Google Scholar 

  • Widdel, F., Kohring, G.W., and Mayer, F. 1983. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids III. Characterization of the filamentous gliding Desulfonema limicola gen. nov., sp. nov., and Desulfonema magnum sp. nov. Arch. Microbiol. 134, 286–294.

    Article  CAS  Google Scholar 

  • Xie, C.H. and Yokota, A. 2005. Reclassification of Alcaligenes latus strains IAM 12599T and IAM 12664 and Pseudomonas saccharophila as Azohydromonas lata gen. nov., comb. nov., Azohydromonas australica sp. nov. and Pelomonassac charophila gen. nov., comb. nov., respectively. Int. J. Syst. Evol. Microbiol. 55, 2419–2425.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaisoo Kim.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene sequence of strains UCM-11T, UCM-F25 and UCM-80T are KT750333, KU214584 and KT750334, respectively.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.M., Kim, J. Azohydromonas riparia sp. nov. and Azohydromonas ureilytica sp. nov. isolated from a riverside soil in South Korea. J Microbiol. 55, 330–336 (2017). https://doi.org/10.1007/s12275-017-6519-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-017-6519-z

Keywords

Navigation