Skip to main content
Log in

Oxidative stress response of Deinococcus geothermalis via a cystine importer

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

A cystine-dependent anti-oxidative stress response is characterized in Deinococcus geothermalis for the first time. Nevertheless, the same transcriptional directed Δdgeo_1985F mutant strain was revealed to have an identical phenotype to the wild-type strain, while the reverse transcriptional directed Δdgeo_1985R mutant strain was more resistant to oxidative stress at a certain concentration of H2O2 than the wild-type strain. The wild-type and mutant strains expressed equal levels of superoxide dismutase and catalase under H2O2-induced stress. Although the expression levels of the general DNA-damage response-related genes recA, pprA, ddrA, and ddrB were up-regulated by more than five-fold in the wild-type strain relative to the Δdgeo_1985R mutant strain, the mutant strain had a higher survival rate than the wild-type under H2O2 stress. The Δdgeo_1985R mutant strain highly expressed a cystine-transporter gene (dgeo_1986), at levels 150-fold higher than the wild-type strain, leading to the conclusion that this cystine transporter might be involved in the defensive response to H2O2 stress. In this study, the cystine transporter was identified and characterized through membrane protein expression analysis, a cystine-binding assay, and assays of intracellular H2O2, cysteine, and thiol levels. The genedisrupted mutant strain of the cystine importer revealed high sensitivity to H2O2 and less absorbed cystine, resulting in low concentrations of total thiol. Thus, the absorbed cystine via this cystine-specific importer may be converted into cysteine, which acts as a primitive defense substrate that non-enzymatically scavenges oxidative stress agents in D. geothermalis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Battista, J.R., Earl, A.M., and Park, M.J. 1999. Why is Deinococcus radiodurans so resistant to ionizing radiation? Trends Microbiol. 7, 362–365.

    Article  CAS  PubMed  Google Scholar 

  • Blasius, M., Sommer, S., and Hubscher, U. 2008. Deinococcus radiodurans: what belongs to the survival kit? Crit. Rev. Biochem. Mol. Biol. 43, 221–238.

    Article  CAS  Google Scholar 

  • Brim, H., Venkateswaran, A., Kostandarithes, H.M., Fredrickson, J.K., and Daly, M.J. 2003. Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments. Appl. Environ. Microbiol. 69, 4575–4582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabiscol, E., Tamarit, J., and Ros, J. 2000. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int. Microbiol. 3, 3–8.

    CAS  PubMed  Google Scholar 

  • Chonoles Imlay, K.R., Korshunov, S., and Imlay, J.A. 2015. Physiological roles and adverse effects of the two cystine importers of Escherichia coli. J. Bacteriol. 197, 3629–3644.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cox, M.M. and Battista, J.R. 2005. Deinococcus radiodurans -the consummate survivor. Nat. Rev. Microbiol. 3, 882–892.

    Article  CAS  PubMed  Google Scholar 

  • Daly, M.J. 2009. A new perspective on radiation resistance based on Deinococcus radiodurans. Nat. Rev. Microbiol. 7, 237–245.

    Article  CAS  PubMed  Google Scholar 

  • de Grado, M., Castan, P., and Berenguer, J. 1999. A high-transformation-efficiency cloning vector for Thermus thermophilus. Plasmid 42, 241–245.

    Article  CAS  PubMed  Google Scholar 

  • Ellman, G.L. 1959. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 70–77.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira, A.C., Nobre, M.F., Rainey, F.A., Silva, M.T., Wait, R., Burghardt, J., Chung, A.P., and da Costa, M.S. 1997. Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int. J. Syst. Bacteriol. 47, 939–947.

    CAS  PubMed  Google Scholar 

  • Gaitonde, M.K. 1967. A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem. J. 104, 627–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris, D.R., Ngo, K.V., and Cox, M.M. 2008. The stable, functional core of DdrA from Deinococcus radiodurans R1 does not restore radioresistance in vivo. J. Bacteriol. 190, 6475–6482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helmann, J.D. 2011. Bacillithiol, a new player in bacterial redox homeostasis. Antioxid. Redox Signal 15, 123–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung, J., Cooper, D., Turner, M.S., Walsh, T., and Giffard, P.M. 2003. Cystine uptake prevents production of hydrogen peroxide by Lactobacillus fermentum BR11. FEMS Microbiol. Lett. 227, 93–99.

    Article  CAS  PubMed  Google Scholar 

  • Hung, J., Turner, M.S., Walsh, T., and Giffard, P.M. 2005. BspA (CyuC) in Lactobacillus fermentum BR11 is a highly expressed high-affinity L-cystine-binding protein. Curr. Microbiol. 50, 33–37.

    Article  CAS  PubMed  Google Scholar 

  • Joe, M.H., Jung, S.W., Im, S.H., Lim, S.Y., Song, H.P., Kwon, O., and Kim, D.H. 2011. Genome-wide response of Deinococcus radiodurans on cadmium toxicity. J. Microbiol. Biotechnol. 21, 438–447.

    CAS  PubMed  Google Scholar 

  • Kim, J., Senadheera, D.B., Lévesque, C.M., and Cvitkovitch, D.G. 2012. TcyR regulates L-cystine uptake via the TcyABC transporter in Streptococcus mutans. FEMS Microbiol. Lett. 328, 114–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krisko, A. and Radman, M. 2013. Biology of extreme radiation resistance: the way of Deinococcus radiodurans. Cold Spring Harb. Perspect. Biol. 5, 10.1101/cshperspect.a012765.

  • Liedert, C., Bernhardt, J., Albrecht, D., Voigt, B., Hecker, M., Salkinoja-Salonen, M., and Neubauer, P. 2010. Two-dimensional proteome reference map for the radiation-resistant bacterium Deinococcus geothermalis. Proteomics 10, 555–563.

    Article  CAS  PubMed  Google Scholar 

  • Liedert, C., Peltola, M., Bernhardt, J., Neubauer, P., and Salkinoja-Salonen, M. 2012. Physiology of resistant Deinococcus geothermalis bacterium aerobically cultivated in low-manganese medium. J. Bacteriol. 194, 1552–1561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Zhou, J., Omelchenko, M.V., Beliaev, A.S., Venkateswaran, A., Stair, J., Wu, L., Thompson, D.K., Xu, D., Rogozin, I.B., et al. 2003. Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc. Natl. Acad. Sci. USA 100, 4191–4196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak, K.J. and Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Lo, R., Turner, M.S., Barry, D.G., Sreekumar, R., Walsh, T.P., and Giffard, P.M. 2009. Cystathionine gamma-lyase is a component of cystine-mediated oxidative defense in Lactobacillus reuteri BR11. J. Bacteriol. 191, 1827–1837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luan, H., Meng, N., Fu, J., Chen, X., Xu, X., Feng, Q., Jiang, H., Dai, J., Yuan, X., Lu, Y., et al. 2014. Genome-wide transcriptome and antioxidant analyses on gamma-irradiated phases of Deinococcus radiodurans R1. PLoS One 9, e85649.

    Article  Google Scholar 

  • Makarova, K.S., Omelchenko, M.V., Gaidamakova, E.K., Matrosova, V.Y., Vasilenko, A., Zhai, M., Lapidus, A., Copeland, A., Kim, E., Land, M., et al. 2007. Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks. PLoS One 2, e955.

    Article  Google Scholar 

  • Markillie, L.M., Varnum, S.M., Hradecky, P., and Wong, K.K. 1999. Targeted mutagenesis by duplication insertion in the radioresistant bacterium Deinococcus radiodurans: radiation sensitivities of catalase (katA) and superoxide dismutase (sodA) mutants. J. Bacteriol. 181, 666–669.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minton, K.W. 1994. DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol. Microbiol. 13, 9–15.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, S. and Imlay, J. 2012. Why do bacteria use so many enzymes to scavenge hydrogen peroxide? Arch. Biochem. Biophys. 525, 145–160.

    Article  CAS  Google Scholar 

  • Nachin, L., Loiseau, L., Expert, D., and Barras, F. 2003. SufC: an unorthodox cytoplasmic ABC/ATPase required for [Fe-S] biogenesis under oxidative stress. EMBO J. 22, 427–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newton, G.L., Rawat, M., La Clair, J.J., Jothivasan, V.K., Budiarto, T., Hamilton, C.J., Claiborne, A., Helmann, J.D., and Fahey, R.C. 2009. Bacillithiol is an antioxidant thiol produced in Bacilli. Nat. Chem. Biol. 5, 625–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norais, C.A., Chitteni-Pattu, S., Wood, E.A., Inman, R.B., and Cox, M.M. 2009. DdrB protein, an alternative Deinococcus radiodurans SSB induced by ionizing radiation. J. Biol. Chem. 284, 21402–21411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohba, H., Satoh, K., Yanagisawa, T., and Narumi, I. 2005. The radiation responsive promoter of the Deinococcus radiodurans pprA gene. Gene 363, 133–141.

    Article  CAS  PubMed  Google Scholar 

  • Ohtsu, I., Kawano, Y., Suzuki, M., Morigasaki, S., Saiki, K., Yamazaki, S., Nonaka, G., and Takagi, H. 2015. Uptake of L-cystine via an ABC transporter contributes defense of oxidative stress in the L-cystine export-dependent manner in Escherichia coli. PLoS One 10, e0120619.

    Article  Google Scholar 

  • Park, S. and Imlay, J.A. 2003. High levels of intracellular cysteine promote oxidative DNA damage by driving the fenton reaction. J. Bacteriol. 185, 1942–1950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheffel, F., Fleischer, R., and Schneider, E. 2004. Functional reconstitution of a maltose ATP-binding cassette transporter from the thermoacidophilic Gram-positive bacterium Alicyclobacillus acidocaldarius. Biochim. Biophys. Acta 1656, 57–65.

    Article  CAS  PubMed  Google Scholar 

  • Selvam, K., Duncan, J.R., Tanaka, M., and Battista, J.R. 2013. DdrA, DdrD, and PprA: components of UV and mitomycin C resistance in Deinococcus radiodurans R1. PLoS One 8, e69007.

    Article  Google Scholar 

  • Shashidhar, R., Kumar, S.A., Misra, H.S., and Bandekar, J.R. 2010. Evaluation of the role of enzymatic and nonenzymatic antioxidant systems in the radiation resistance of Deinococcus. Can. J. Microbiol. 56, 195–201.

    Article  CAS  PubMed  Google Scholar 

  • Slade, D. and Radman, M. 2011. Oxidative stress resistance in Deinococcus radiodurans. Microbiol. Mol. Biol. Rev. 75, 133–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka, M., Earl, A.M., Howell, H.A., Park, M.J., Eisen, J.A., Peterson, S.N., and Battista, J.R. 2004. Analysis of Deinococcus radiodurans’s transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance. Genetics 168, 21–33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian, B., Wang, H., Ma, X., Hu, Y., Sun, Z., Shen, S., Wang, F., and Hua, Y. 2010. Proteomic analysis of membrane proteins from a radioresistant and moderate thermophilic bacterium Deinococcus geothermalis. Mol. Biosyst. 6, 2068–2077.

    Article  CAS  PubMed  Google Scholar 

  • Turner, M.S., Woodberry, T., Hafner, L.M., and Giffard, P.M. 1999. The bspA locus of Lactobacillus fermentum BR11 encodes an Lcystine uptake system. J. Bacteriol. 181, 2192–2198.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wayne, L.G. and Diaz, G.A. 1986. A double staining method for differentiating between two classes of mycobacterial catalase in polyacrylamide electrophoresis gels. Anal. Biochem. 157, 89–92.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Y., Chen, W., Zhao, Y., Xu, H., and Hua, Y. 2009. Involvement of RecG in H2O2-induced damage repair in Deinococcus radiodurans. Can. J. Microbiol. 55, 841–848.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Jae Lee.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Jeong, S., Lim, S. et al. Oxidative stress response of Deinococcus geothermalis via a cystine importer. J Microbiol. 55, 137–146 (2017). https://doi.org/10.1007/s12275-017-6382-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-017-6382-y

Keywords

Navigation