Skip to main content
Log in

Comparative analysis of bacterial diversity in the rhizosphere of tomato by culture-dependent and -independent approaches

  • Microbial Ecology and Environmental Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The microbiome in the rhizosphere–the region surrounding plant roots–plays a key role in plant growth and health, enhancing nutrient availability and protecting plants from biotic and abiotic stresses. To assess bacterial diversity in the tomato rhizosphere, we performed two contrasting approaches: culture-dependent and -independent. In the culture-dependent approach, two culture media (Reasoner’s 2A agar and soil extract agar) were supplemented with 12 antibiotics for isolating diverse bacteria from the tomato rhizosphere by inhibiting predominant bacteria. A total of 689 bacterial isolates were clustered into 164 operational taxonomic units (OTUs) at 97% sequence similarity, and these were found to belong to five bacterial phyla (Proteobacteria, Actinobacteria, Bacteroidetes, Acidobacteria, and Firmicutes). Of these, 122 OTUs were retrieved from the antibiotic-containing media, and 80 OTUs were recovered by one specific antibiotic-containing medium. In the culture-independent approach, we conducted Illumina MiSeq amplicon sequencing of the 16S rRNA gene and obtained 19,215 high-quality sequences, which clustered into 478 OTUs belonging to 16 phyla. Among the total OTUs from the MiSeq dataset, 22% were recovered in the culture collection, whereas 41% of OTUs in the culture collection were not captured by MiSeq sequencing. These results showed that antibiotics were effective in isolating various taxa that were not readily isolated on antibiotic-free media, and that both contrasting approaches provided complementary information to characterize bacterial diversity in the tomato rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison, L.E. 1965. Organic carbon. In Norman, A.G. (ed.), Methods of soil analysis. Part 2. Chemical and microbiological properties, pp. 1367–1378. American Society of Agronomy, Soil Science Society of America, Madison, Wisconsin, USA.

    Google Scholar 

  • Amann, R.I., Ludwig, W., and Schleifer, K.H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169.

    CAS  PubMed  PubMed Central  Google Scholar 

  • An, D.S., Liu, Q.M., Lee, H.G., Jung, M.S., Kim, S.C., Lee, S.T., and Im, W.T. 2013. Sphingomonas ginsengisoli sp. nov. and Sphingomonas sediminicola sp. nov. Int. J. Syst. Evol. Microbiol. 63, 496–501.

    Article  CAS  PubMed  Google Scholar 

  • Asnicar, F., Weingart, G., Tickle, T.L., Huttenhower, C., and Segata, N. 2015. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. Peer J. 3, e1029.

    Article  Google Scholar 

  • Bai, Y., Muller, D.B., Srinivas, G., Garrido-Oter, R., Potthoff, E., Rott, M., Dombrowski, N., Munch, P.C., Spaepen, S., Remus-Emsermann, M., et al. 2015. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528, 364–369.

    Article  CAS  PubMed  Google Scholar 

  • Berendsen, R.L., Pieterse, C.M.J., and Bakker, P. 2012. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486.

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli, D., Rott, M., Schlaeppi, K., Ver Loren van Themaat, E., Ahmadinejad, N., Assenza, F., Rauf, P., Huettel, B., Reinhardt, R., Schmelzer, E., et al. 2012. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95.

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E., and Schulze-Lefert, P. 2013. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838.

    Article  CAS  PubMed  Google Scholar 

  • Cole, J.R., Wang, Q., Fish, J.A., Chai, B., McGarrell, D.M., Sun, Y., Brown, C.T., Porras-Alfaro, A., Kuske, C.R., and Tiedje, J.M. 2014. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642.

    Article  CAS  PubMed  Google Scholar 

  • da Rocha, U.N., van Overbeek, L., and van Elsas, J.D. 2009. Exploration of hitherto-uncultured bacteria from the rhizosphere. FEMS Microbiol. Ecol. 69, 313–328.

    Article  PubMed  Google Scholar 

  • Edgar, R.C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998.

    Article  CAS  PubMed  Google Scholar 

  • Fierer, N., Bradford, M.A., and Jackson, R.B. 2007. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364.

    Article  PubMed  Google Scholar 

  • Francis, I.M., Jochimsen, K.N., De Vos, P., and van Bruggen, A.H. 2014. Reclassification of rhizosphere bacteria including strains causing corky root of lettuce and proposal of Rhizorhapis suberifaciens gen.nov., comb.nov., Sphingobium mellinum sp. nov., Sphingobium xanthum sp. nov. and Rhizorhabdus argentea gen.nov., sp. nov. Int. J. Syst. Evol. Microbiol. 64, 1340–1350.

    Article  CAS  PubMed  Google Scholar 

  • Hiergeist, A., Gläsner, J., Reischl, U., and Gessner, A. 2015. Analyses of intestinal microbiota: culture versus sequencing. ILAR J. 56, 228–240.

    Article  CAS  PubMed  Google Scholar 

  • Joa, J.H., Weon, H.Y., Hyun, H.N., Jeun, Y.C., and Koh, S.W. 2014. Effect of long-term different fertilization on bacterial community structures and diversity in citrus orchard soil of volcanic ash. J. Microbiol. 52, 995–1001.

    Article  CAS  PubMed  Google Scholar 

  • Kindt, R. and Coe, R. 2005. Tree diversity analysis: a manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), Nairobi, Kenya.

    Google Scholar 

  • Koch, A.L. 2001. Oligotrophs versus copiotrophs. Bioessays 23, 657–661.

    Article  CAS  PubMed  Google Scholar 

  • Lagier, J.C., Armougom, F., Million, M., Hugon, P., Pagnier, I., Robert, C., Bittar, F., Fournous, G., Gimenez, G., Maraninchi, M., et al. 2012. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin. Microbiol. Infect. 18, 1185–1193.

    Article  CAS  PubMed  Google Scholar 

  • Lagier, J.C., Hugon, P., Khelaifia, S., Fournier, P.E., La Scola, B., and Raoult, D. 2015. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin. Microbiol. Rev. 28, 237–264.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lane, D.J. 1991. 16S/23S rRNA sequencing. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic acid techniques in bacterial systematics, pp. 115–147. John Wiley & Sons, New York, USA.

    Google Scholar 

  • Li, X.Z., Rui, J.P., Mao, Y.J., Yannarell, A., and Mackie, R. 2014. Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar. Soil. Biol. Biochem. 68, 392–401.

    Article  CAS  Google Scholar 

  • Lugtenberg, B. and Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556.

    Article  CAS  PubMed  Google Scholar 

  • Lundberg, D.S., Lebeis, S.L., Paredes, S.H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V., del Rio, T.G., et al. 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch, M.D. and Neufeld, J.D. 2015. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13, 217–229.

    Article  CAS  PubMed  Google Scholar 

  • McCaig, A.E., Grayston, S.J., Prosser, J.I., and Glover, L.A. 2001. Impact of cultivation on characterisation of species composition of soil bacterial communities. FEMS Microbiol. Ecol. 35, 37–48.

    Article  CAS  PubMed  Google Scholar 

  • Mendes, R., Garbeva, P., and Raaijmakers, J.M. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663.

    Article  CAS  PubMed  Google Scholar 

  • Moss, J.A., Nocker, A., and Snyder, R.A. 2011. Microbial characteristics of a submerged karst cave system in northern florida. Geomicrobiol. J. 28, 719–731.

    Article  Google Scholar 

  • NIAST. 1988. Methods of soil chemical analysis. National Institute of Agricultural Science and Technology (NIAST), Rural Development Administration (RDA), Suwon, Korea.

    Google Scholar 

  • Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Eduard, S., et al. 2016. Vegan: community ecology package. R package version 2.3–5.

    Google Scholar 

  • Pascual, J., Blanco, S., García-López, M., García-Salamanca, A., Bursakov, S.A., Genilloud, O., Bills, G.F., Ramos, J.L., and van Dillewijn, P. 2016. Assessing bacterial diversity in the rhizosphere of Thymus zygis growing in the Sierra Nevada National Park (Spain) through culture-dependent and independent approaches. PLoS One 11, e0146558.

    Google Scholar 

  • Pedrós-Alió, C. 2012. The rare bacterial biosphere. Ann. Rev. Mar. Sci. 4, 449–466.

    Article  PubMed  Google Scholar 

  • Pham, V.H. and Kim, J. 2012. Cultivation of unculturable soil bacteria. Trends Biotechnol. 30, 475–484.

    Article  CAS  PubMed  Google Scholar 

  • Pinyakong, O., Habe, H., and Omori, T. 2003. The unique aromatic catabolic genes in Sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). J. Gen. Appl. Microbiol. 49, 1–19.

    Article  CAS  PubMed  Google Scholar 

  • Pruesse, E., Peplies, J., and Glöckner, F.O. 2012. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rettedal, E.A., Gumpert, H., and Sommer, M.O. 2014. Cultivationbased multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria. Nat. Commun. 5, 4714.

    Article  CAS  PubMed  Google Scholar 

  • Roggo, C., Coronado, E., Moreno-Forero, S.K., Harshman, K., Weber, J., and van der Meer, J.R. 2013. Genome-wide transposon insertion scanning of environmental survival functions in the polycyclic aromatic hydrocarbon degrading bacterium Sphingomonas wittichii RW1. Environ. Microbiol. 15, 2681–2695.

    CAS  PubMed  Google Scholar 

  • Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., et al. 2009. Introducing mothur: open-source, platformindependent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shade, A., Hogan, C.S., Klimowicz, A.K., Linske, M., McManus, P.S., and Handelsman, J. 2012. Culturing captures members of the soil rare biosphere. Environ. Microbiol. 14, 2247–2252.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shokralla, S., Spall, J.L., Gibson, J.F., and Hajibabaei, M. 2012. Nextgeneration sequencing technologies for environmental DNA research. Mol. Ecol. 21, 1794–1805.

    Article  CAS  PubMed  Google Scholar 

  • Sogin, M.L., Morrison, H.G., Huber, J.A., Mark Welch, D., Huse, S.M., Neal, P.R., Arrieta, J.M., and Herndl, G.J. 2006. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. USA 103, 12115–12120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefani, F.O.P., Bell, T.H., Marchand, C., de la Providencia, I.E., El Yassimi, A., St-Arnaud, M., and Hijri, M. 2015. Culture-dependent and -independent methods capture different microbial community fractions in hydrocarbon-contaminated soils. PLoS One 10, e0128272.

    Google Scholar 

  • Vartoukian, S.R., Palmer, R.M., and Wade, W.G. 2010. Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol. Lett. 309, 1–7.

    CAS  PubMed  Google Scholar 

  • Wang, B.Z., Guo, P., Zheng, J.W., Hang, B.J., Li, L., He, J., and Li, S.P. 2011. Sphingobium wenxiniae sp. nov., a synthetic pyrethroid (SP)-degrading bacterium isolated from activated sludge in an SP-manufacturing wastewater treatment facility. Int. J. Syst. Evol. Microbiol. 61, 1776–1780.

    Article  CAS  PubMed  Google Scholar 

  • Warnes, G.R., Bolker, B., Bonebakker, L., Gentleman, R., Huber, W., Liaw, A., Lumley, T., Maechler, M., Magnusson, A., Moeller, S., et al. 2009. gplots: Various R programming tools for plotting data. R package version 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang-Yeon Weon.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.A., Park, J., Chu, B. et al. Comparative analysis of bacterial diversity in the rhizosphere of tomato by culture-dependent and -independent approaches. J Microbiol. 54, 823–831 (2016). https://doi.org/10.1007/s12275-016-6410-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-016-6410-3

Keywords

Navigation