Skip to main content
Log in

Purification, crystallization, and preliminary X-ray crystallographic analysis of the Group III chaperonin from Carboxydothermus hydrogenoformans

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Chaperonins (CPNs) are megadalton sized ATP-dependent nanomachines that facilitate protein folding through complex cycles of complex allosteric articulation. They consist of two back-to-back stacked multisubunit rings. CPNs are usually classified into Group I and Group II. Here, we report the crystallization of both the AMPPNP (an ATP analogue) and ADP bound forms of a novel CPN, classified as belonging to a third Group, recently discovered in the extreme thermophile Carboxydothermus hydrogenoformans. Crystals of the two forms were grown by the vapor batch crystallization method at 295 K. Crystals of the Ch-CPN/AMPPNP complex diffracted to 3.0 Å resolution and belonged to the space group P422, with unit-cell parameters a = b = 186.166, c = 160.742 Å. Assuming the presence of four molecules in the asymmetric unit, the solvent content was estimated to be about 60.02%. Crystals of the Ch-CPN/ADP complex diffracted to 4.0 Å resolution and belonged to the space group P4212, with unit-cell parameters a = b = 209.780, c = 169.813Å. Assuming the presence of four molecules in the asymmetric unit, the solvent content was estimated to be about 70.19%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balch, W.E., Morimoto, R.I., Dillin, A., and Kelly, J.W. 2008. Adapting proteostasis for disease intervention. Science 319, 916–919.

    Article  PubMed  CAS  Google Scholar 

  • Bigotti, M.G. and Clarke, A.R. 2008. Chaperonins: The hunt for the group II mechanism. Arch. Biochem. Biophys. 474, 331–339.

    Article  PubMed  CAS  Google Scholar 

  • Bukau, B. and Horwich, A.L. 1998. The hsp70 and hsp60 chaperone machines. Cell 92, 351–366.

    Article  PubMed  CAS  Google Scholar 

  • Collaborative Computational Project, N. 1994. The ccp4 suite: Programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763.

    Article  Google Scholar 

  • Ditzel, L., Lowe, J., Stock, D., Stetter, K.O., Huber, H., Huber, R., and Steinbacher, S. 1998. Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93, 125–138.

    Article  PubMed  CAS  Google Scholar 

  • Frydman, J., Nimmesgern, E., Erdjument-Bromage, H., Wall, J.S., Tempst, P., and Hartl, F.U. 1992. Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. EMBO J. 11, 4767–4778.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gao, Y., Thomas, J.O., Chow, R.L., Lee, G.H., and Cowan, N.J. 1992. A cytoplasmic chaperonin that catalyzes β-actin folding. Cell 69, 1043–1050.

    Article  PubMed  CAS  Google Scholar 

  • Kabsch, W. 2010. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim, S., Willison, K.R., and Horwich, A.L. 1994. Cystosolic chaperonin subunits have a conserved atpase domain but diverged polypeptide-binding domains. Trends Biochem. Sci. 19, 543–548.

    Article  PubMed  CAS  Google Scholar 

  • Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948.

    Article  PubMed  CAS  Google Scholar 

  • Otwinowski, Z. and Minor, W. 1997. Processing of X-ray diffraction data collected in oscillation mode. Method. Enzymol. 276, 307–326.

    Article  CAS  Google Scholar 

  • Pereira, J.H., Ralston, C.Y., Douglas, N.R., Meyer, D., Knee, K.M., Goulet, D.R., King, J.A., Frydman, J., and Adams, P.D. 2010. Crystal structures of a group II chaperonin reveal the open and closed states associated with the protein folding cycle. J. Biol. Chem. 285, 27958–27966.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Phipps, B.M., Hoffmann, A., Stetter, K.O., and Baumeister, W. 1991. A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. EMBO J. 10, 1711–1722.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ranson, N.A., Clare, D.K., Farr, G.W., Houldershaw, D., Horwich, A.L., and Saibil, H.R. 2006. Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes. Nat. Struct. Mol. Biol. 13, 147–152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Techtmann, S.M., Colman, A.S., Murphy, M.B., Schackwitz, W.S., Goodwin, L.A., and Robb, F.T. 2011. Regulation of multiple carbon monoxide consumption pathways in anaerobic bacteria. Front. Microbiol. 2, 147.

    Article  PubMed  PubMed Central  Google Scholar 

  • Techtmann, S.M., Lebedinsky, A.V., Colman, A.S., Sokolova, T.G., Woyke, T., Goodwin, L., and Robb, F.T. 2012. Evidence for horizontal gene transfer of anaerobic carbon monoxide dehydrogenases. Front. Microbiol. 3, 132.

    Article  PubMed  PubMed Central  Google Scholar 

  • Techtmann, S.M. and Robb, F.T. 2010. Archaeal-like chaperonins in bacteria. Proc. Natl. Acad. Sci. USA 107, 20269–20274.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tilly, K., Murialdo, H., and Georgopoulos, C. 1981. Identification of a second Escherichia coli groE gene whose product is necessary for bacteriophage morphogenesis. Proc. Natl. Acad. Sci. USA 78, 1629–1633.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu, M., Ren, Q., Durkin, A.S., Daugherty, S.C., Brinkac, L.M., Dodson, R.J., Madupu, R., Sullivan, S.A., Kolonay, J.F., Haft, D.H., et al. 2005. Life in hot carbon monoxide: The complete genome sequence of Carboxydothermus hydrogenoformans Z-2901. PLoS Genet. 1, e65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu, Z., Horwich, A.L., and Sigler, P.B. 1997. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388, 741–750.

    Article  PubMed  CAS  Google Scholar 

  • Yaffe, M.B., Farr, G.W., Miklos, D., Horwich, A.L., Sternlicht, M.L., and Sternlicht, H. 1992. TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature 358, 245–248.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Shin Cha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Y.J., Rowland, S.E., Robb, F.T. et al. Purification, crystallization, and preliminary X-ray crystallographic analysis of the Group III chaperonin from Carboxydothermus hydrogenoformans . J Microbiol. 54, 440–444 (2016). https://doi.org/10.1007/s12275-016-6089-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-016-6089-5

Keywords

Navigation