Skip to main content
Log in

Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans

  • Review
  • Biology of Human Fungal Pathogen
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Candida albicans is a human fungal pathogen capable of causing lethal systemic infections. The plasma membrane plays key roles in virulence because it not only functions as a protective barrier, it also mediates dynamic functions including secretion of virulence factors, cell wall synthesis, invasive hyphal morphogenesis, endocytosis, and nutrient uptake. Consistent with this functional complexity, the plasma membrane is composed of a wide array of lipids and proteins. These components are organized into distinct domains that will be the topic of this review. Some of the plasma membrane domains that will be described are known to act as scaffolds or barriers to diffusion, such as MCC/eisosomes, septins, and sites of contact with the endoplasmic reticulum. Other zones mediate dynamic processes, including secretion, endocytosis, and a special region at hyphal tips that facilitates rapid growth. The highly organized architecture of the plasma membrane facilitates the coordination of diverse functions and promotes the pathogenesis of C. albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilar, P.S., Frohlich, F., Rehman, M., Shales, M., Ulitsky, I., Olivera- Couto, A., Braberg, H., Shamir, R., Walter, P., Mann, M., et al. 2010. A plasma-membrane E-MAP reveals links of the eisosome with sphingolipid metabolism and endosomal trafficking. Nat. Struct. Mol. Biol. 17, 901–908.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Alvarez, F.J., Douglas, L.M., and Konopka, J.B. 2007. Sterol-rich plasma membrane domains in fungi. Eukaryot. Cell 6, 755–763.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Alvarez, F.J., Douglas, L.M., Rosebrock, A., and Konopka, J.B. 2008. The Sur7 protein regulates plasma membrane organization and prevents intracellular cell wall growth in Candida albicans. Mol. Biol. Cell 19, 5214–5225.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Audhya, A. and Emr, S.D. 2002. Stt4 PI 4-kinase localizes to the plasma membrane and functions in the Pkc1-mediated MAP kinase cascade. Dev. Cell 2, 593–605.

    Article  PubMed  CAS  Google Scholar 

  • Avinoam, O., Schorb, M., Beese, C.J., Briggs, J.A., and Kaksonen, M. 2015. Endocytic sites mature by continuous bending and remodeling of the clathrin coat. Science 348, 1369–1372.

    Article  PubMed  CAS  Google Scholar 

  • Badrane, H., Nguyen, M.H., Blankenship, J.R., Cheng, S., Hao, B., Mitchell, A.P., and Clancy, C.J. 2012. Rapid redistribution of phosphatidylinositol-(4,5)-bisphosphate and septins during the Candida albicans response to caspofungin. Antimicrob. Agents Chemother. 56, 4614–4624.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Baird, D., Stefan, C., Audhya, A., Weys, S., and Emr, S.D. 2008. Assembly of the PtdIns 4-kinase Stt4 complex at the plasma membrane requires Ypp1 and Efr3. J. Cell Biol. 183, 1061–1074.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Barral, Y., Mermall, V., Mooseker, M.S., and Snyder, M. 2000. Compartmentalization of the cell cortex by septins is required for maintainence of cell polarity in yeast. Mol. Cell 5, 841–851.

    Article  PubMed  CAS  Google Scholar 

  • Barug, D. and de Groot, K. 1985. Effect of the imidazole derivative lombazole on the ultrastructure of Staphylococcus epidermidis and Candida albicans. Antimicrob. Agents Chemother. 28, 643–647.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Berchtold, D., Piccolis, M., Chiaruttini, N., Riezman, I., Riezman, H., Roux, A., Walther, T.C., and Loewith, R. 2012. Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis. Nat. Cell Biol. 14, 542–547.

    Article  PubMed  CAS  Google Scholar 

  • Berchtold, D. and Walther, T.C. 2009. TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain. Mol. Biol. Cell 20, 1565–1575.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bernardo, S.M. and Lee, S.A. 2010. Candida albicans SUR7 contributes to secretion, biofilm formation, and macrophage killing. BMC Microbiol. 10, DOI: 10.1186/1471-2180-1110-1133.

    Google Scholar 

  • Bishop, A., Lane, R., Beniston, R., Chapa-y-Lazo, B., Smythe, C., and Sudbery, P. 2010. Hyphal growth in Candida albicans requires the phosphorylation of Sec2 by the Cdc28-Ccn1/Hgc1 kinase. EMBO J. 29, 2930–2942.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Blankenship, J.R., Cheng, S., Woolford, C.A., Xu, W., Johnson, T.M., Rogers, P.D., Fanning, S., Nguyen, M.H., Clancy, C.J., and Mitchell, A.P. 2014. Mutational analysis of essential septins reveals a role for septin-mediated signaling in filamentation. Eukaryot. Cell 13, 1403–1410.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bonifacino, J.S. 2014. Vesicular transport earns a Nobel. Trends Cell Biol. 24, 3–5.

    Article  PubMed  CAS  Google Scholar 

  • Borth, N., Walther, A., Reijnst, P., Jorde, S., Schaub, Y., and Wendland, J. 2010. Candida albicans Vrp1 is required for polarized morphogenesis and interacts with Wal1 and Myo5. Microbiology 156, 2962–2969.

    Article  PubMed  CAS  Google Scholar 

  • Brach, T., Specht, T., and Kaksonen, M. 2011. Reassessment of the role of plasma membrane domains in the regulation of vesicular traffic in yeast. J. Cell Sci. 124, 328–337.

    Article  PubMed  CAS  Google Scholar 

  • Brand, A., Vacharaksa, A., Bendel, C., Norton, J., Haynes, P., Henry- Stanley, M., Wells, C., Ross, K., Gow, N.A., and Gale, C.A. 2008. An internal polarity landmark is important for externally induced hyphal behaviors in Candida albicans. Eukaryot. Cell 7, 712–720.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Breslow, D.K., Collins, S.R., Bodenmiller, B., Aebersold, R., Simons, K., Shevchenko, A., Ejsing, C.S., and Weissman, J.S. 2010. Orm family proteins mediate sphingolipid homeostasis. Nature 463, 1048–1053.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bridges, A.A. and Gladfelter, A.S. 2015. Septin form and function at the cell cortex. J. Biol. Chem. 290, 17173–17180.

    Article  PubMed  CAS  Google Scholar 

  • Brown, G.D., Denning, D.W., Gow, N.A., Levitz, S.M., Netea, M.G., and White, T.C. 2012. Hidden killers: human fungal infections. Sci. Transl. Med. 4, 165rv113.

    Article  CAS  Google Scholar 

  • Buser, C. and Drubin, D.G. 2013. Ultrastructural imaging of endocytic sites in Saccharomyces cerevisiae by transmission electron microscopy and immunolabeling. Microsc. Microanal. 19, 381–392.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Caballero-Lima, D., Kaneva, I.N., Watton, S.P., Sudbery, P.E., and Craven, C.J. 2013. The spatial distribution of the exocyst and actin cortical patches is sufficient to organize hyphal tip growth. Eukaryot. Cell 12, 998–1008.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Caballero-Lima, D. and Sudbery, P.E. 2014. In Candida albicans, phosphorylation of Exo84 by Cdk1-Hgc1 is necessary for efficient hyphal extension. Mol. Biol. Cell 25, 1097–1110.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Carey, J., Brynda, J., Wolfova, J., Grandori, R., Gustavsson, T., Ettrich, R., and Smatanova, I.K. 2007. WrbA bridges bacterial flavodoxins and eukaryotic NAD(P)H:quinone oxidoreductases. Protein Sci. 16, 2301–2305.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chao, J.T., Wong, A.K., Tavassoli, S., Young, B.P., Chruscicki, A., Fang, N.N., Howe, L.J., Mayor, T., Foster, L.J., and Loewen, C.J. 2014. Polarization of the endoplasmic reticulum by ER-septin tethering. Cell 158, 620–632.

    Article  PubMed  CAS  Google Scholar 

  • Chavez-Dozal, A.A., Bernardo, S.M., Rane, H.S., Herrera, G., Kulkarny, V., Wagener, J., Cunningham, I., Brand, A.C., Gow, N.A., and Lee, S.A. 2015a. The Candida albicans exocyst subunit Sec6 contributes to cell wall integrity and is a determinant of hyphal branching. Eukaryot. Cell 14, 684–697.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chavez-Dozal, A.A., Bernardo, S.M., Rane, H.S., and Lee, S.A. 2015b. Functional analysis of the exocyst subunit Sec15 in Candida albicans. Eukaryot. Cell 14, 1228–1239.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cheon, S.A., Bal, J., Song, Y., Hwang, H.M., Kim, A.R., Kang, W.K., Kang, H.A., Hannibal-Bach, H.K., Knudsen, J., Ejsing, C.S., et al. 2012. Distinct roles of two ceramide synthases, CaLag1p and CaLac1p, in the morphogenesis of Candida albicans. Mol. Microbiol. 83, 728–745.

    Article  PubMed  CAS  Google Scholar 

  • Cid, V.J., Jimenez, J., Molina, M., Sanchez, M., Nombela, C., and Thorner, J.W. 2002. Orchestrating the cell cycle in yeast: sequential localization of key mitotic regulators at the spindle pole and the bud neck. Microbiology 148, 2647–2659.

    Article  PubMed  CAS  Google Scholar 

  • Cowen, L.E., Sanglard, D., Howard, S.J., Rogers, P.D., and Perlin, D.S. 2015. Mechanisms of antifungal drug resistance. Cold Spring Harb. Perspect. Med. 5, DOI: 10.1101/cshperspect.a019752.

    Google Scholar 

  • Crampin, H., Finley, K., Gerami-Nejad, M., Court, H., Gale, C., Berman, J., and Sudbery, P. 2005. Candida albicans hyphae have a Spitzenkorper that is distinct from the polarisome found in yeast and pseudohyphae. J. Cell Sci. 118, 2935–2947.

    Article  PubMed  CAS  Google Scholar 

  • Davis, D.A. 2009. How human pathogenic fungi sense and adapt to pH: the link to virulence. Curr. Opin. Microbiol. 12, 365–370.

    Article  PubMed  CAS  Google Scholar 

  • Deng, C., Xiong, X., and Krutchinsky, A.N. 2009. Unifying fluorescence microscopy and mass spectrometry for studying protein complexes in cells. Mol. Cell Proteomics 8, 1413–1423.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dobbelaere, J. and Barral, Y. 2004. Spatial coordination of cytokinetic events by compartmentalization of the cell cortex. Science 305, 393–396.

    Article  PubMed  CAS  Google Scholar 

  • Donovan, K.W. and Bretscher, A. 2015. Tracking individual secretory vesicles during exocytosis reveals an ordered and regulated process. J. Cell Biol. 210, 181–189.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Douglas, L.M., Alvarez, F.J., McCreary, C., and Konopka, J.B. 2005. Septin function in yeast model systems and pathogenic fungi. Eukaryot. Cell 4, 1503–1512.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Douglas, L.M. and Konopka, J.B. 2014. Fungal membrane organization: the eisosome concept. Annu. Rev. Microbiol. 68, 377–393.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, L.M., Martin, S.W., and Konopka, J.B. 2009. BAR domain proteins Rvs161 and Rvs167 contribute to Candida albicans endocytosis, morphogenesis, and virulence. Infect. Immun. 77, 4150–4160.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Douglas, L.M., Wang, H.X., Keppler-Ross, S., Dean, N., and Konopka, J.B. 2012. Sur7 promotes plasma membrane organization and is needed for resistance to stressful conditions and to the invasive growth and virulence of Candida albicans. mBio 3, e00254–00211.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Douglas, L.M., Wang, H.X., and Konopka, J.B. 2013. The MARVEL domain protein Nce102 regulates actin organization and invasive growth of Candida albicans. mBio 4, e00723–13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Drgonova, J., Drgon, T., Tanaka, K., Kollar, R., Chen, G.C., Ford, R.A., Chan, C.S., Takai, Y., and Cabib, E. 1996. Rho1p, a yeast protein at the interface between cell polarization and morphogenesis. Science 272, 277–279.

    Article  PubMed  CAS  Google Scholar 

  • Epp, E., Nazarova, E., Regan, H., Douglas, L.M., Konopka, J.B., Vogel, J., and Whiteway, M. 2013. Clathrin- and Arp2/3-independent endocytosis in the fungal pathogen Candida albicans. mBio 4, e00476–00413.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Epstein, S. and Riezman, H. 2013. Sphingolipid signaling in yeast: potential implications for understanding disease. Front. Biosci. 5, 97–108.

    Google Scholar 

  • Frohlich, F., Christiano, R., Olson, D.K., Alcazar-Roman, A., De-Camilli, P., and Walther, T.C. 2014. A role for eisosomes in maintenance of plasma membrane phosphoinositide levels. Mol. Biol. Cell 25, 2797–2806.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Frohlich, F., Moreira, K., Aguilar, P.S., Hubner, N.C., Mann, M., Walter, P., and Walther, T.C. 2009. A genome-wide screen for genes affecting eisosomes reveals Nce102 function in sphingolipid signaling. J. Cell Biol. 185, 1227–1242.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ghugtyal, V., Garcia-Rodas, R., Seminara, A., Schaub, S., Bassilana, M., and Arkowitz, R.A. 2015. Phosphatidylinositol-4-phosphatedependent membrane traffic is critical for fungal filamentous growth. Proc. Natl. Acad. Sci. USA 112, 8644–8649.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gladfelter, A.S. 2010. Guides to the final frontier of the cytoskeleton: septins in filamentous fungi. Curr. Opin. Microbiol. 13, 720–726.

    Article  PubMed  CAS  Google Scholar 

  • Gladfelter, A.S., Pringle, J.R., and Lew, D.J. 2001. The septin cortex at the yeast mother-bud neck. Curr. Opin. Microbiol. 4, 681–689.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Novo, A., Correa-Bordes, J., Labrador, L., Sanchez, M., Vazquez de Aldana, C.R., and Jimenez, J. 2008. Sep7 is essential to modify septin ring dynamics and inhibit cell separation during Candida albicans hyphal growth. Mol. Biol. Cell 19, 1509–1518.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Goode, B.L., Eskin, J.A., and Wendland, B. 2015. Actin and endocytosis in budding yeast. Genetics 199, 315–358.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gross, H., Kuebler, O., Bas, E., and Moor, H. 1978. Decoration of specific sites on freeze-fractured membranes. J. Cell Biol. 79, 646–656.

    Article  PubMed  CAS  Google Scholar 

  • Grossmann, G., Malinsky, J., Stahlschmidt, W., Loibl, M., Weig-Meckl, I., Frommer, W.B., Opekarova, M., and Tanner, W. 2008. Plasma membrane microdomains regulate turnover of transport proteins in yeast. J. Cell Biol. 183, 1075–1088.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Grossmann, G., Opekarova, M., Malinsky, J., Weig-Meckl, I., and Tanner, W. 2007. Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast. EMBO J. 26, 1–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Guo, W., Tamanoi, F., and Novick, P. 2001. Spatial regulation of the exocyst complex by Rho1 GTPase. Nat. Cell Biol. 3, 353–360.

    Article  PubMed  CAS  Google Scholar 

  • Han, S., Lone, M.A., Schneiter, R., and Chang, A. 2010. Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control. Proc. Natl. Acad. Sci. USA 107, 5851–5856.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Heider, M.R. and Munson, M. 2012. Exorcising the exocyst complex. Traffic 13, 898–907.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Henne, W.M., Liou, J., and Emr, S.D. 2015. Molecular mechanisms of inter-organelle ER-PM contact sites. Curr. Opin. Cell Biol. 35, 123–130.

    Article  PubMed  CAS  Google Scholar 

  • Ho, Y., Gruhler, A., Heilbut, A., Bader, G.D., Moore, L., Adams, S.L., Millar, A., Taylor, P., Bennett, K., Boutilier, K., et al. 2002. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183.

    Article  PubMed  CAS  Google Scholar 

  • Jin, H., McCaffery, J.M., and Grote, E. 2008. Ergosterol promotes pheromone signaling and plasma membrane fusion in mating yeast. J. Cell. Biol. 180, 813–826.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jones, L.A. and Sudbery, P.E. 2010. Spitzenkorper, exocyst, and polarisome components in Candida albicans hyphae show different patterns of localization and have distinct dynamic properties. Eukaryot. Cell 9, 1455–1465.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kabeche, R., Baldissard, S., Hammond, J., Howard, L., and Moseley, J.B. 2011. The filament-forming protein Pil1 assembles linear eisosomes in fission yeast. Mol. Biol. Cell 22, 4059–4067.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kabeche, R., Roguev, A., Krogan, N.J., and Moseley, J.B. 2014. A Pil1-Sle1-Syj1-Tax4 functional pathway links eisosomes with PI(4,5)P2 regulation. J. Cell Sci. 127, 1318–1326.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kaksonen, M., Toret, C.P., and Drubin, D.G. 2005. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123, 305–320.

    Article  PubMed  CAS  Google Scholar 

  • Kamble, C., Jain, S., Murphy, E., and Kim, K. 2011. Requirements of Slm proteins for proper eisosome organization, endocytic trafficking and recycling in the yeast Saccharomyces cerevisiae. J. Biosci. 36, 79–96.

    Article  PubMed  CAS  Google Scholar 

  • Karotki, L., Huiskonen, J.T., Stefan, C.J., Zólkowska, N.E., Roth, R., Surma, M.A., Krogan, N.J., Emr, S.D., Heuser, J., Grunewald, K., et al. 2011. Eisosome proteins assemble into a membrane scaffold. J. Cell Biol. 195, 889–902.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Klis, F.M., Brul, S., and De Groot, P.W. 2010. Covalently linked wall proteins in ascomycetous fungi. Yeast 27, 489–493.

    Article  PubMed  CAS  Google Scholar 

  • Kullberg, B.J. and Arendrup, M.C. 2015. Invasive candidiasis. N. Engl. J. Med. 373, 1445–1456.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.H., Heuser, J.E., Roth, R., and Goodenough, U. 2015. Eisosome ultrastructure and evolution in fungi, microalgae and lichens. Eukaryot. Cell 10, 1017–1042.

    Article  CAS  Google Scholar 

  • Li, C.R., Lee, R.T., Wang, Y.M., Zheng, X.D., and Wang, Y. 2007. Candida albicans hyphal morphogenesis occurs in Sec3p-independent and Sec3p-dependent phases separated by septin ring formation. J. Cell Sci. 120, 1898–1907.

    Article  PubMed  CAS  Google Scholar 

  • Li, L., Naseem, S., Sharma, S., and Konopka, J.B. 2015. Flavodoxinlike proteins protect Candida albicans from oxidative stress and promote virulence. PLoS Pathog. 11, e1005147.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li, L., Zhang, C., and Konopka, J.B. 2012. A Candida albicans temperature- sensitive cdc12-6 mutant identifies roles for septins in selection of sites of germ tube formation and hyphal morphogenesis. Eukaryot. Cell 11, 1210–1218.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Loibl, M., Grossmann, G., Stradalova, V., Klingl, A., Rachel, R., Tanner, W., Malinsky, J., and Opekarova, M. 2010. C terminus of Nce102 determines the structure and function of microdomains in the Saccharomyces cerevisiae plasma membrane. Eukaryot. Cell 9, 1184–1192.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Luo, G., Gruhler, A., Liu, Y., Jensen, O.N., and Dickson, R.C. 2008. The sphingolipid long-chain base-Pkh1/2-Ypk1/2 signaling pathway regulates eisosome assembly and turnover. J. Biol. Chem. 283, 10433–10444.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Luo, G., Zhang, J., and Guo, W. 2014. The role of Sec3p in secretory vesicle targeting and exocyst complex assembly. Mol. Biol. Cell 25, 3813–3822.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Maeda, K., Anand, K., Chiapparino, A., Kumar, A., Poletto, M., Kaksonen, M., and Gavin, A.C. 2013. Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins. Nature 501, 257–261.

    Article  PubMed  CAS  Google Scholar 

  • Malinska, K., Malinsky, J., Opekarova, M., and Tanner, W. 2003. Visualization of protein compartmentation within the plasma membrane of living yeast cells. Mol. Biol. Cell 14, 4427–4436.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Malinska, K., Malinsky, J., Opekarova, M., and Tanner, W. 2004. Distribution of Can1p into stable domains reflects lateral protein segregation within the plasma membrane of living S. cerevisiae cells. J. Cell Sci. 117, 6031–6041.

    Article  PubMed  CAS  Google Scholar 

  • Malinsky, J., Opekarova, M., and Tanner, W. 2010. The lateral compartmentation of the yeast plasma membrane. Yeast 27, 473–478.

    Article  PubMed  CAS  Google Scholar 

  • Manford, A.G., Stefan, C.J., Yuan, H.L., Macgurn, J.A., and Emr, S.D. 2012. ER-to-plasma membrane tethering proteins regulate cell signaling and ER morphology. Dev. Cell 23, 1129–1140.

    Article  PubMed  CAS  Google Scholar 

  • Martin, S.G. and Arkowitz, R.A. 2014. Cell polarization in budding and fission yeasts. FEMS Microbiol. Rev. 38, 228–253.

    Article  PubMed  CAS  Google Scholar 

  • Martin, S.W., Douglas, L.M., and Konopka, J.B. 2005. Cell cycle dynamics and quorum sensing in Candida albicans chlamydospores are distinct from budding and hyphal cells. Eukaryot. Cell 4, 1191–1202.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Martin, S.W. and Konopka, J.B. 2004a. Lipid raft polarization contributes to hyphal growth in Candida albicans. Eukaryot. Cell 3, 675–684.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Martin, S.W. and Konopka, J.B. 2004b. SUMO modification of septin- interacting proteins in Candida albicans. J. Biol. Chem. 279, 40861–40867.

    Article  PubMed  CAS  Google Scholar 

  • Mascaraque, V., Hernaez, M.L., Jimenez-Sanchez, M., Hansen, R., Gil, C., Martin, H., Cid, V.J., and Molina, M. 2013. Phosphoproteomic analysis of protein kinase C signaling in Saccharomyces cerevisiae reveals Slt2 mitogen-activated protein kinase (MAPK)- dependent phosphorylation of eisosome core components. Mol. Cell. Proteomics 12, 557–574.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • McMurray, M.A. and Thorner, J. 2009. Reuse, replace, recycle. Specificity in subunit inheritance and assembly of higher-order septin structures during mitotic and meiotic division in budding yeast. Cell Cycle 8, 195–203.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Merlini, L. and Piatti, S. 2011. The mother-bud neck as a signaling platform for the coordination between spindle position and cytokinesis in budding yeast. Biol. Chem. 392, 805–812.

    Article  PubMed  CAS  Google Scholar 

  • Moor, H. and Muhlethaler, K. 1963. Fine structure in frozen-etched yeast cells. J. Cell Biol. 17, 609–628.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Moreira, K.E., Schuck, S., Schrul, B., Frohlich, F., Moseley, J.B., Walther, T.C., and Walter, P. 2012. Seg1 controls eisosome assembly and shape. J. Cell Biol. 198, 405–420.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Moreira, K.E., Walther, T.C., Aguilar, P.S., and Walter, P. 2009. Pil1 controls eisosome biogenesis. Mol. Biol. Cell 20, 809–818.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Moser von Filseck, J., Copic, A., Delfosse, V., Vanni, S., Jackson, C.L., Bourguet, W., and Drin, G. 2015. INTRACELLULAR TRANSPORT. Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate. Science 349, 432–436.

    Article  PubMed  CAS  Google Scholar 

  • Mulholland, J., Preuss, D., Moon, A., Wong, A., Drubin, D., and Botstein, D. 1994. Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane. J. Cell Biol. 125, 381–391.

    Article  PubMed  CAS  Google Scholar 

  • Munro, S. 2003. Lipid rafts: Elusive or illusive? Cell 115, 377–388.

    Article  PubMed  CAS  Google Scholar 

  • Munson, M. and Novick, P. 2006. The exocyst defrocked, a framework of rods revealed. Nat. Struct. Mol. Biol. 13, 577–581.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, E.R., Boxberger, J., Colvin, R., Lee, S.J., Zahn, G., Loor, F., and Kim, K. 2011. Pil1, an eisosome organizer, plays an important role in the recruitment of synaptojanins and amphiphysins to facilitate receptor-mediated endocytosis in yeast. Eur. J. Cell Biol. 90, 825–833.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, E.R. and Kim, K.T. 2012. Insights into eisosome assembly and organization. J. Biosci. 37, 295–500.

    Article  CAS  Google Scholar 

  • Niles, B.J., Mogri, H., Hill, A., Vlahakis, A., and Powers, T. 2012. Plasma membrane recruitment and activation of the AGC kinase Ypk1 is mediated by target of rapamycin complex 2 (TORC2) and its effector proteins Slm1 and Slm2. Proc. Natl. Acad. Sci. USA 109, 1536–1541.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Niles, B.J. and Powers, T. 2012. Plasma membrane proteins Slm1 and Slm2 mediate activation of the AGC kinase Ypk1 by TORC2 and sphingolipids in S. cerevisiae. Cell Cycle 11, 3745–3749.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Obara, K., Yamamoto, H., and Kihara, A. 2012. Membrane protein Rim21 plays a central role in sensing ambient pH in Saccharomyces cerevisiae. J. Biol. Chem. 287, 38473–38481.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Oberholzer, U., Nantel, A., Berman, J., and Whiteway, M. 2006. Transcript profiles of Candida albicans cortical actin patch mutants reflect their cellular defects: contribution of the Hog1p and Mkc1p signaling pathways. Eukaryot. Cell 5, 1252–1265.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Odds, F.C., Brown, A.J., and Gow, N.A. 2003. Antifungal agents: Mechanisms of action. Trends Microbiol. 11, 272–279.

    Article  PubMed  CAS  Google Scholar 

  • Oh, Y. and Bi, E. 2011. Septin structure and function in yeast and beyond. Trends Cell. Biol. 21, 141–148.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Olivera-Couto, A. and Aguilar, P.S. 2012. Eisosomes and plasma membrane organization. Mol. Genet. Genomics 287, 607–620.

    Article  PubMed  CAS  Google Scholar 

  • Olivera-Couto, A., Grana, M., Harispe, L., and Aguilar, P.S. 2011. The eisosome core is composed of BAR domain proteins. Mol. Biol. Cell 22, 2360–2372.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pfaller, M.A. and Diekema, D.J. 2010. Epidemiology of invasive mycoses in North America. Crit. Rev. Microbiol. 36, 1–53.

    Article  PubMed  Google Scholar 

  • Pichler, H., Gaigg, B., Hrastnik, C., Achleitner, G., Kohlwein, S.D., Zellnig, G., Perktold, A., and Daum, G. 2001. A subfraction of the yeast endoplasmic reticulum associates with the plasma membrane and has a high capacity to synthesize lipids. Eur. J. Biochem. 268, 2351–2361.

    Article  PubMed  CAS  Google Scholar 

  • Pleskot, R., Cwiklik, L., Jungwirth, P., Zarsky, V., and Potocky, M. 2015. Membrane targeting of the yeast exocyst complex. Biochim. Biophys. Acta. 1848, 1481–1489.

    Article  PubMed  CAS  Google Scholar 

  • Qadota, H., Python, C.P., Inoue, S.B., Arisawa, M., Anraku, Y., Zheng, Y., Watanabe, T., Levin, D.E., and Ohya, Y. 1996. Identification of yeast Rho1p GTPase as a regulatory subunit of 1,3-betaglucan synthase. Science 272, 279–281.

    Article  PubMed  CAS  Google Scholar 

  • Reijnst, P., Walther, A., and Wendland, J. 2011. Dual-colour fluorescence microscopy using yEmCherry-/GFP-tagging of eisosome components Pil1 and Lsp1 in Candida albicans. Yeast 28, 331–338.

    Article  PubMed  CAS  Google Scholar 

  • Roelants, F.M., Breslow, D.K., Muir, A., Weissman, J.S., and Thorner, J. 2011. Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 108, 19222–19227.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Roh, D.H., Bowers, B., Schmidt, M., and Cabib, E. 2002. The septation apparatus, an autonomous system in budding yeast. Mol. Biol. Cell 13, 2747–2759.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schmidt, M., Varma, A., Drgon, T., Bowers, B., and Cabib, E. 2003. Septins, under Cla4p regulation, and the chitin ring are required for neck integrity in budding yeast. Mol. Biol. Cell 14, 2128–2141.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schuberth, C. and Wedlich-Soldner, R. 2015. Building a patchwork - The yeast plasma membrane as model to study lateral domain formation. Biochim. Biophys. Acta. 1853, 767–774.

    Article  PubMed  CAS  Google Scholar 

  • Schuck, S., Prinz, W.A., Thorn, K.S., Voss, C., and Walter, P. 2009. Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J. Cell Biol. 187, 525–536.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Seger, S., Rischatsch, R., and Philippsen, P. 2011. Formation and stability of eisosomes in the filamentous fungus Ashbya gossypii. J. Cell Sci. 124, 1629–1634.

    Article  PubMed  CAS  Google Scholar 

  • Sinha, I., Wang, Y.M., Philp, R., Li, C.R., Yap, W.H., and Wang, Y. 2007. Cyclin-dependent kinases control septin phosphorylation in Candida albicans hyphal development. Dev. Cell 13, 421–432.

    Article  PubMed  CAS  Google Scholar 

  • Sirajuddin, M., Farkasovsky, M., Hauer, F., Kuhlmann, D., Macara, I.G., Weyand, M., Stark, H., and Wittinghofer, A. 2007. Structural insight into filament formation by mammalian septins. Nature 449, 311–315.

    Article  PubMed  CAS  Google Scholar 

  • Skruzny, M., Brach, T., Ciuffa, R., Rybina, S., Wachsmuth, M., and Kaksonen, M. 2012. Molecular basis for coupling the plasma membrane to the actin cytoskeleton during clathrin-mediated endocytosis. Proc. Natl. Acad. Sci. USA 109, E2533–2542.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Spira, F., Mueller, N.S., Beck, G., von Olshausen, P., Beig, J., and Wedlich-Soldner, R. 2012. Patchwork organization of the yeast plasma membrane into numerous coexisting domains. Nat. Cell Biol. 14, 640–648.

    Article  PubMed  CAS  Google Scholar 

  • Stradalova, V., Blazikova, M., Grossmann, G., Opekarova, M., Tanner, W., and Malinsky, J. 2012. Distribution of cortical endoplasmic reticulum determines positioning of endocytic events in yeast plasma membrane. PLoS One 7, e35132.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stradalova, V., Stahlschmidt, W., Grossmann, G., Blazikova, M., Rachel, R., Tanner, W., and Malinsky, J. 2009. Furrow-like invaginations of the yeast plasma membrane correspond to membrane compartment of Can1. J. Cell Sci. 122, 2887–2894.

    Article  PubMed  CAS  Google Scholar 

  • Sudbery, P.E. 2001. The germ tubes of Candida albicans hyphae and pseudohyphae show different patterns of septin ring localization. Mol. Microbiol. 41, 19–31.

    Article  PubMed  CAS  Google Scholar 

  • Sudbery, P.E. 2011. Growth of Candida albicans hyphae. Nat. Rev. Microbiol. 9, 737–748.

    Article  PubMed  CAS  Google Scholar 

  • Sun, Y., Miao, Y., Yamane, Y., Zhang, C., Shokat, K.M., Takematsu, H., Kozutsumi, Y., and Drubin, D.G. 2012. Orm protein phosphoregulation mediates transient sphingolipid biosynthesis response to heat stress via the Pkh-Ypk and Cdc55-PP2A pathways. Mol. Biol. Cell 23, 2388–2398.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Takeo, K. 1984. Lack of invaginations of the plasma membrane during budding and cell division of Saccharomyces cerevisiae and Schizosaccharomyces pombe. FEMS Microbiol. Lett. 22, 97–100.

    Article  Google Scholar 

  • Takizawa, P.A., DeRisi, J.L., Wilhelm, J.E., and Vale, R.D. 2000. Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science 290, 341–344.

    Article  PubMed  CAS  Google Scholar 

  • Tavassoli, S., Chao, J.T., Young, B.P., Cox, R.C., Prinz, W.A., de Kroon, A.I., and Loewen, C.J. 2013. Plasma membrane-endoplasmic reticulum contact sites regulate phosphatidylcholine synthesis. EMBO Rep. 14, 434–440.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Thayer, N.H., Leverich, C.K., Fitzgibbon, M.P., Nelson, Z.W., Henderson, K.A., Gafken, P.R., Hsu, J.J., and Gottschling, D.E. 2014. Identification of long-lived proteins retained in cells undergoing repeated asymmetric divisions. Proc. Natl. Acad. Sci. USA 111, 14019–14026.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Utsugi, T., Minemura, M., Hirata, A., Abe, M., Watanabe, D., and Ohya, Y. 2002. Movement of yeast 1,3-beta-glucan synthase is essential for uniform cell wall synthesis. Genes Cells 7, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • van Meer, G., Voelker, D.R., and Feigenson, G.W. 2008. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vangelatos, I., Roumelioti, K., Gournas, C., Suarez, T., Scazzocchio, C., and Sophianopoulou, V. 2010. Eisosome organization in the filamentous ascomycete Aspergillus nidulans. Eukaryot. Cell 9, 1441–1454.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vernay, A., Schaub, S., Guillas, I., Bassilana, M., and Arkowitz, R.A. 2012. A steep phosphoinositide bis-phosphate gradient forms during fungal filamentous growth. J. Cell Biol. 198, 711–730.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Veses, V., Richards, A., and Gow, N.A. 2009. Vacuole inheritance regulates cell size and branching frequency of Candida albicans hyphae. Mol. Microbiol. 71, 505–519.

    Article  PubMed  CAS  Google Scholar 

  • Walther, A. and Wendland, J. 2004. Polarized hyphal growth in Candida albicans requires the Wiskott-Aldrich Syndrome protein homolog Wal1p. Eukaryot. Cell 3, 471–482.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Walther, T.C., Aguilar, P.S., Frohlich, F., Chu, F., Moreira, K., Burlingame, A.L., and Walter, P. 2007. Pkh-kinases control eisosome assembly and organization. EMBO J. 26, 4946–4955.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Walther, T.C., Brickner, J.H., Aguilar, P.S., Bernales, S., Pantoja, C., and Walter, P. 2006. Eisosomes mark static sites of endocytosis. Nature 439, 998–1003.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H.X., Douglas, L.M., Aimanianda, V., Latge, J.P., and Konopka, J.B. 2011. The Candida albicans Sur7 protein is needed for proper synthesis of the fibrillar component of the cell wall that confers strength. Eukaryot. Cell 10, 72–80.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang, Y. 2009. CDKs and the yeast-hyphal decision. Curr. Opin. Microbiol. 12, 644–649.

    Article  PubMed  CAS  Google Scholar 

  • Warenda, A.J., Kauffman, S., Sherrill, T.P., Becker, J.M., and Konopka, J.B. 2003. Candida albicans septin mutants are defective for invasive growth and virulence. Infect. Immun. 71, 4045–4051.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Warenda, A.J. and Konopka, J.B. 2002. Septin function in Candida albicans morphogenesis. Mol. Biol. Cell 13, 2732–2746.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Weinberg, J. and Drubin, D.G. 2012. Clathrin-mediated endocytosis in budding yeast. Trends Cell Biol. 22, 1–13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • West, M., Zurek, N., Hoenger, A., and Voeltz, G.K. 2011. A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature. J. Cell Biol. 193, 333–346.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wong, A.K., Chao, J.T., and Loewen, C.J. 2014. Barriers to uniformity within the endoplasmic reticulum. Curr. Opin. Cell Biol. 29, 31–38.

    Article  PubMed  CAS  Google Scholar 

  • Young, M.E., Karpova, T.S., Brugger, B., Moschenross, D.M., Wang, G.K., Schneiter, R., Wieland, F.T., and Cooper, J.A. 2002. The Sur7p family defines novel cortical domains in Saccharomyces cerevisiae, affects sphingolipid metabolism, and is involved in sporulation. Mol. Cell. Biol. 22, 927–934.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yu, H., Braun, P., Yildirim, M.A., Lemmens, I., Venkatesan, K., Sahalie, J., Hirozane-Kishikawa, T., Gebreab, F., Li, N., Simonis, N., et al. 2008. High-quality binary protein interaction map of the yeast interactome network. Science 322, 104–110.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zeng, G., Wang, Y.M., and Wang, Y. 2012. Cdc28-Cln3 phosphorylation of Sla1 regulates actin patch dynamics in different modes of fungal growth. Mol. Biol. Cell 23, 3485–3497.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang, B., Yu, Q., Jia, C., Wang, Y., Xiao, C., Dong, Y., Xu, N., Wang, L., and Li, M. 2015. The actin-related protein Sac1 is required for morphogenesis and cell wall integrity in Candida albicans. Fungal Genet. Biol. 81, 261–270.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., Bi, E., Novick, P., Du, L., Kozminski, K.G., Lipschutz, J.H., and Guo, W. 2001. Cdc42 interacts with the exocyst and regulates polarized secretion. J. Biol. Chem. 276, 46745–46750.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., Lester, R.L., and Dickson, R.C. 2004. Pil1p and Lsp1p negatively regulate the 3-phosphoinositide-dependent protein kinase-like kinase Pkh1p and downstream signaling pathways Pkc1p and Ypk1p. J. Biol. Chem. 279, 22030–22038.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, H., Michelot, A., Koskela, E.V., Tkach, V., Stamou, D., Drubin, D.G., and Lappalainen, P. 2013. Membrane-sculpting BAR domains generate stable lipid microdomains. Cell Rep. 4, 1213–1223.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zheng, X. and Wang, Y. 2004. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. EMBO J. 23, 1845–1856.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zheng, X.D., Lee, R.T., Wang, Y.M., Lin, Q.S., and Wang, Y. 2007. Phosphorylation of Rga2, a Cdc42 GAP, by CDK/Hgc1 is crucial for Candida albicans hyphal growth. EMBO J. 26, 3760–3769.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zimmerberg, J. and McLaughlin, S. 2004. Membrane curvature: How BAR domains bend bilayers. Curr. Biol. 14, R250–R252.

    Article  PubMed  CAS  Google Scholar 

  • Ziółkowska, N.E., Christiano, R., and Walther, T.C. 2012. Organized living: formation mechanisms and functions of plasma membrane domains in yeast. Trends Cell Biol. 22, 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Ziółkowska, N.E., Karotki, L., Rehman, M., Huiskonen, J.T., and Walther, T.C. 2011. Eisosome-driven plasma membrane organization is mediated by BAR domains. Nat. Struct. Mol. Biol. 18, 854–856.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James B. Konopka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Douglas, L.M., Konopka, J.B. Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans . J Microbiol. 54, 178–191 (2016). https://doi.org/10.1007/s12275-016-5621-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-016-5621-y

Keywords

Navigation