Skip to main content
Log in

The contribution of Aspergillus fumigatus stress responses to virulence and antifungal resistance

  • Review
  • Biology of Human Fungal Pathogen
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Invasive aspergillosis has emerged as one of the most common life-threatening fungal disease of humans. The emergence of antifungal resistant pathogens represents a current and increasing threat to society. In turn, new strategies to combat fungal infection are urgently required. Fungal adaptations to stresses experienced within the human host are a prerequisite for the survival and virulence strategies of the pathogen. Here, we review the latest information on the signalling pathways in Aspergillus fumigatus that contribute to stress adaptations and virulence, while highlighting their potential as targets for the development of novel combinational antifungal therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arendrup, M.C., Garcia-Effron, G., Buzina, W., Mortensen, K.L., Reiter, N., Lundin, C., Jensen, H.E., Lass-Flörl, C., Perlin, D.S., and Bruun, B. 2009. Breakthrough Aspergillus fumigatus and Candida albicans double infection during caspofungin treatment: laboratory characteristics and implication for susceptibility testing. Antimicrob. Agents Chemother. 53, 1185–1193.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Arvas, M., Pakula, T., Lanthaler, K., Saloheimo, M., Valkonen, M., Suortti, T., Robson, G., and Penttilä, M. 2006. Common features and interesting differences in transcriptional responses to secretion stress in the fungi Trichoderma reesei and Saccharomyces cerevisiae. BMC Genomics 7, 32.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Beauvais, A., Fontaine, T., Aimanianda, V., and Latgé, J.P. 2014. Aspergillus cell wall and biofilm. Mycopathologia 178, 371–377.

    Article  PubMed  Google Scholar 

  • Bertuzzi, M., Schrettl, M., Alcazar-Fuoli, L., Cairns, T.C., Muñoz, A., Walker, L.A., Herbst, S., Safari, M., Cheverton, A.M., Chen, D., et al. 2014. The pH-responsive PacC transcription factor of Aspergillus fumigatus governs epithelial entry and tissue invasion during pulmonary aspergillosis. PLoS Pathog. 10, e1004413.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Blatzer, M., Barker, B.M., Willger, S.D., Beckmann, N., Blosser, S.J., Cornish, E.J., Mazurie, A., Grahl, N., Haas, H., and Cramer, R.A. 2011a. SREBP coordinates iron and ergosterol homeostasis to mediate triazole drug and hypoxia responses in the human fungal pathogen Aspergillus fumigatus. PLoS Genet. 7, e1002374.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Blatzer, M., Binder, U., and Haas, H. 2011b. The metalloreductase FreB is involved in adaptation of Aspergillus fumigatus to iron starvation. Fungal Genet. Biol. 48, 1027–1033.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bom, V.L., de Castro, P.A., Winkelströter, L.K., Marine, M., Hori, J.I., Ramalho, L.N., Dos Reis, T.F., Goldman, M.H., Brown, N.A., Rajendran, R., et al. 2015. The Aspergillus fumigatus sitA phosphatase homologue is important for adhesion, cell wall integrity, biofilm formation, and virulence. Eukaryot. Cell 14, 728–744.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brown, G.D., Denning, D.W., Gow, N.A., Levitz, S.M., Netea, M.G., and White, T.C. 2012. Hidden killers: human fungal infections. Sci. Transl. Med. 4, 165rv13.

    Article  CAS  Google Scholar 

  • Brown, A.J., Haynes, K., and Quinn, J. 2009. Nitrosative and oxidative stress responses in fungal pathogenicity. Curr. Opin. Microbiol. 12, 384–391.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Calera, J.A., Paris, S., Monod, M., Hamilton, A.J., Debeaupuis, J.P., Diaquin, M., López-Medrano, R., Leal, F., and Latgé, J.P. 1997. Cloning and disruption of the antigenic catalase gene of Aspergillus fumigatus. Infect. Immun. 65, 4718–4724.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chauhan, N., Latge, J.P., and Calderone, R. 2006. Signalling and oxidant adaptation in Candida albicans and Aspergillus fumigatus. Nat. Rev. Microbiol. 4, 435–444.

    Article  PubMed  CAS  Google Scholar 

  • Chung, D., Barker, B.M., Carey, C.C., Merriman, B., Werner, E.R., Lechner, B.E., Dhingra, S., Cheng, C., Xu, W., Blosser, S.J., et al. 2014. ChIP-seq and in vivo transcriptome analyses of the Aspergillus fumigatus SREBP SrbA reveals a new regulator of the fungal hypoxia response and virulence. PLoS Pathog. 10, e1004487.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cowen, L.E. 2008. The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat. Rev. Microbiol. 6, 187–198.

    Article  PubMed  CAS  Google Scholar 

  • Cowen, L.E. and Lindquist, S. 2005. Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 309, 2185–2189.

    Article  PubMed  CAS  Google Scholar 

  • Cowen, L.E., Singh, S.D., Köhler, J.R., Collins, C., Zaas, A.K., Schell, W.A., Aziz, H., Mylonakis, E., Perfect, J.R., Whitesell, L., et al. 2009. Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proc. Natl. Acad. Sci. USA 106, 2818–2823.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cramer, R.A. Jr., Perfect, B.Z., Pinchai, N., Park, S., Perlin, D.S., Asfaw, Y.G., Heitman, J., Perfect, J.R., and Steinbach, W.J. 2008. Calcineurin target CrzA regulates conidial germination, hyphal growth, and pathogenesis of Aspergillus fumigatus. Eukaryot. Cell 7, 1085–1097.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • da Silva Ferreira, M.E., Heinekamp, T., Härtl, A., Brakhage, A.A., Semighini, C.P., Harris, S.D., Savoldi, M., de Gouvêa, P.F., de Souza Goldman, M.H., and Goldman, G.H. 2007. Functional characterization of the Aspergillus fumigatus calcineurin. Fungal Genet. Biol. 44, 219–230.

    Article  PubMed  CAS  Google Scholar 

  • Dagenais, T.R. and Keller, N.P. 2009. Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin. Microbiol. Rev. 22, 447–465.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • de Castro, P.A., Chen, C., de Almeida, R.S., Freitas, F.Z., Bertolini, M.C., Morais, E.R., Brown, N.A., Ramalho, L.N., Hagiwara, D., Mitchell, T.K., et al. 2014a. ChIP-seq reveals a role for CrzA in the Aspergillus fumigatus high-osmolarity glycerol response (HOG) signalling pathway. Mol. Microbiol. 94, 655–674.

    Article  PubMed  CAS  Google Scholar 

  • de Castro, P.A., Chiaratto, J., Winkelströter, L.K., Bom, V.L., Ramalho, L.N., Goldman, M.H., Brown, N.A., and Goldman, G.H. 2014b. The involvement of the Mid1/Cch1/Yvc1 calcium channels in Aspergillus fumigatus virulence. PLoS One 9, e103957.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dinamarco, T.M., Almeida, R.S., de Castro, P.A., Brown, N.A., dos Reis, T.F., Ramalho, L.N., Savoldi, M., Goldman, M.H., and Goldman, G.H. 2012a. Molecular characterization of the putative transcription factor SebA involved in virulence in Aspergillus fumigatus. Eukaryot. Cell 11, 518–531.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dinamarco, T.M., Freitas, F.Z., Almeida, R.S., Brown, N.A., dos Reis, T.F., Ramalho, L.N., Savoldi, M., Goldman, M.H., Bertolini, M.C., and Goldman, G.H. 2012b. Functional characterization of an Aspergillus fumigatus calcium transporter (PmcA) that is essential for fungal infection. PLoS One 7, e37591.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dirr, F., Echtenacher, B., Heesemann, J., Hoffmann, P., Ebel, F., and Wagener, J. 2010. AfMkk2 is required for cell wall integrity signaling, adhesion, and full virulence of the human pathogen Aspergillus fumigatus. Int. J. Med. Microbiol. 300, 496–502.

    Article  PubMed  CAS  Google Scholar 

  • Feng, X., Krishnan, K., Richie, D.L., Aimanianda, V., Hartl, L., Grahl, N., Powers-Fletcher, M.V., Zhang, M., Fuller, K.K., Nierman, W.C., et al. 2011. HacA-independent functions of the ER stress sensor IreA synergize with the canonical UPR to influence virulence traits in Aspergillus fumigatus. PLoS Pathog. 7, e1002330.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fortwendel, J.R., Juvvadi, P.R., Perfect, B.Z., Rogg, L.E., Perfect, J.R., and Steinbach, W.J. 2010. Transcriptional regulation of chitin synthases by calcineurin controls paradoxical growth of Aspergillus fumigatus in response to caspofungin. Antimicrob. Agents Chemother. 54, 1555–1563.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fréalle, E., Aliouat-Denis, C.M., Delhaes, L., Hot, D., and Dei-Cas, E. 2013. Transcriptomic insights into the oxidative response of stress-exposed Aspergillus fumigatus. Curr. Pharm. Des. 19, 3713–3737.

    Article  PubMed  Google Scholar 

  • Gasch, A.P. 2007. Comparative genomics of the environmental stress response in ascomycete fungi. Yeast 24, 961–976.

    Article  PubMed  CAS  Google Scholar 

  • Grahl, N., Puttikamonkul, S., Macdonald, J.M., Gamcsik, M.P., Ngo, L.Y., Hohl, T.M., and Cramer, R.A. 2011. In vivo hypoxia and a fungal alcohol dehydrogenase influence the pathogenesis of invasive pulmonary aspergillosis. PLoS Pathog. 7, e1002145.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hagiwara, D., Takahashi-Nakaguchi, A., Toyotome, T., Yoshimi, A., Abe, K., Kamei, K., Gonoi, T., and Kawamoto, S. 2013. NikA/TcsC histidine kinase is involved in conidiation, hyphal morphology, and responses to osmotic stress and antifungal chemicals in Aspergillus fumigatus. PLoS One 8, e80881.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hasan, R., Leroy, C., Isnard, A.D., Labarre, J., Boy-Marcotte, E., and Toledano, M.B. 2002. The control of the yeast H2O2 response by the Msn2/4 transcription factors. Mol. Microbiol. 45, 233–241.

    Article  PubMed  CAS  Google Scholar 

  • Heinekamp, T., Thywiβen, A., Macheleidt, J., Keller, S., Valiante, V., and Brakhage, A.A. 2013. Aspergillus fumigatus melanins: interference with the host endocytosis pathway and impact on virulence. Front Microbiol. 3, 440.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hensel, M., Arst, H.N. Jr., Aufauvre-Brown, A., and Holden, D.W. 1998. The role of the Aspergillus fumigatus areA gene in invasive pulmonary aspergillosis. Mol. Gen. Genet. 258, 553–557.

    Article  PubMed  CAS  Google Scholar 

  • Hynes, M.J., Szewczyk, E., Murray, S.L., Suzuki, Y., Davis, M.A., and Sealy-Lewis, H.M. 2007. Transcriptional control of gluconeogenesis in Aspergillus nidulans. Genetics 176, 139–150.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ibrahim-Granet, O., Dubourdeau, M., Latge, J.P., Ave, P., Huerre, M., Brakhage, A.A., and Brock, M. 2008. Methylcitrate synthase from Aspergillus fumigatus is essential for manifestation of invasive aspergillosis. Cell. Microbiol. 10, 134–148.

    PubMed  CAS  Google Scholar 

  • Jahn, B., Koch, A., Schmidt, A., Wanner, G., Gehringer, H., Bhakdi, S., and Brakhage, A.A. 1997. Isolation and characterization of a pigmentless-conidium mutant of Aspergillus fumigatus with altered conidial surface and reduced virulence. Infect. Immun. 65, 5110–5117.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jain, R., Valiante, V., Remme, N., Docimo, T., Heinekamp, T., Hertweck, C., Gershenzon, J., Haas, H., and Brakhage, A.A. 2011. The MAP kinase MpkA controls cell wall integrity, oxidative stress response, gliotoxin production and iron adaptation in Aspergillus fumigatus. Mol. Microbiol. 82, 39–53.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Juvvadi, P.R., Lamoth, F., and Steinbach, W.J. 2014. Calcineurinmediated regulation of hyphal growth, septation, and virulence in Aspergillus fumigatus. Mycopathologia 178, 341–348.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kim, J.H., Campbell, B.C., Mahoney, N., Chan, K.L., Molyneux, R.J., and Balajee, A. 2010. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents. Fungal Biol. 114, 817–824.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.H., Campbell, B.C., Mahoney, N., Chan, K.L., Molyneux, R.J., and May, G.S. 2007. Enhanced activity of strobilurin and fludioxonil by using berberine and phenolic compounds to target fungal antioxidative stress response. Lett. Appl. Microbiol. 45, 134–141.

    Article  PubMed  CAS  Google Scholar 

  • Krappmann, S., Bignell, E.M., Reichard, U., Rogers, T., Haynes, K., and Braus, G.H. 2004. The Aspergillus fumigatus transcriptional activator CpcA contributes significantly to the virulence of this fungal pathogen. Mol. Microbiol. 52, 785–799.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan, K. and Askew, D.S. 2014. The fungal UPR: a regulatory hub for virulence traits in the mold pathogen Aspergillus fumigatus. Virulence 5, 334–340.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lambou, K., Lamarre, C., Beau, R., Dufour, N., and Latgé, J.P. 2010. Functional analysis of the superoxide dismutase family in Aspergillus fumigatus. Mol. Microbiol. 75, 910–923.

    Article  PubMed  CAS  Google Scholar 

  • Lamoth, F., Juvvadi, P.R., Fortwendel, J.R., and Steinbach, W.J. 2012. Heat shock protein 90 is required for conidiation and cell wall integrity in Aspergillus fumigatus. Eukaryot. Cell 11, 1324–1332.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Leal, S.M. Jr., Vareechon, C., Cowden, S., Cobb, B.A., Latgé, J.P., Momany, M., and Pearlman, E. 2012. Fungal antioxidant pathways promote survival against neutrophils during infection. J. Clin. Invest. 122, 2482–2498.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lelièvre, L., Groh, M., Angebault, C., Maherault, A.C., Didier, E., and Bougnoux, M.E. 2013. Azole resistant Aspergillus fumigatus: an emerging problem. Med. Mal. Infect. 43, 139–145.

    Article  PubMed  Google Scholar 

  • Lessing, F., Kniemeyer, O., Wozniok, I., Loeffler, J., Kurzai, O., Haertl, A., and Brakhage, A.A. 2007. The Aspergillus fumigatus transcriptional regulator AfYap1 represents the major regulator for defense against reactive oxygen intermediates but is dispensable for pathogenicity in an intranasal mouse infection model. Eukaryot. Cell 6, 2290–2302.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu, H., Gravelat, F.N., Chiang, L.Y., Chen, D., Vanier, G., Ejzykowicz, D.E., Ibrahim, A.S., Nierman, W.C., Sheppard, D.C., and Filler, S.G. 2010. Aspergillus fumigatus AcuM regulates both iron acquisition and gluconeogenesis. Mol. Microbiol. 78, 1038–1054.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ma, Y., Qiao, J., Liu, W., Wan, Z., Wang, X., Calderone, R., and Li, R. 2008. The sho1 sensor regulates growth, morphology, and oxidant adaptation in Aspergillus fumigatus but is not essential for development of invasive pulmonary aspergillosis. Infect. Immun. 76, 1695–1701.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Malavazi, I., Goldman, G.H., and Brown, N.A. 2014. The importance of connections between the cell wall integrity pathway and the unfolded protein response in filamentous fungi. Brief. Funct. Genomics 13, 456–470.

    Article  PubMed  Google Scholar 

  • McCormick, A., Jacobsen, I.D., Broniszewska, M., Beck, J., Heesemann, J., and Ebel, F. 2012. The two-component sensor kinase TcsC and its role in stress resistance of the human-pathogenic mold Aspergillus fumigatus. PLoS One 7, e38262.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • McDonagh, A., Fedorova, N.D., Crabtree, J., Yu, Y., Kim, S., Chen, D., Loss, O., Cairns, T., Goldman, G., Armstrong-James, D., et al. 2008. Sub-telomere directed gene expression during initiation of invasive aspergillosis. PLoS Pathog. 4, e1000154.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Müller, S., Baldin, C., Groth, M., Guthke, R., Kniemeyer, O., Brakhage, A.A., and Valiante, V. 2012. Comparison of transcriptome technologies in the pathogenic fungus Aspergillus fumigatus reveals novel insights into the genome and MpkA dependent gene expression. BMC Genomics 13, 519.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Panepinto, J.C., Oliver, B.G., Fortwendel, J.R., Smith, D.L., Askew, D.S., and Rhodes, J.C. 2003. Deletion of the Aspergillus fumigatus gene encoding the Ras-related protein RhbA reduces virulence in a model of invasive pulmonary aspergillosis. Infect. Immun. 71, 2819–2826.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Paris, S., Wysong, D., Debeaupuis, J.P., Shibuya, K., Philippe, B., Diamond, R.D., and Latgé, J.P. 2003. Catalases of Aspergillus fumigatus. Infect. Immun. 71, 3551–3562.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Peñalva, M.A., Tilburn, J., Bignell, E., and Arst, H.N. Jr. 2008. Ambient pH gene regulation in fungi: making connections. Trends Microbiol. 16, 291–300.

    Article  PubMed  CAS  Google Scholar 

  • Philippe, B., Ibrahim-Granet, O., Prévost, M.C., Gougerot-Pocidalo, M.A., Sanchez Perez, M., Van der Meeren, A., and Latgé, J.P. 2003. Killing of Aspergillus fumigatus by alveolar macrophages is mediated by reactive oxidant intermediates. Infect. Immun. 71, 3034–3042.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Richie, D.L., Fuller, K.K., Fortwendel, J., Miley, M.D., McCarthy, J.W., Feldmesser, M., Rhodes, J.C., and Askew, D.S. 2007. Unexpected link between metal ion deficiency and autophagy in Aspergillus fumigatus. Eukaryot. Cell 6, 2437–2447.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Richie, D.L., Hartl, L., Aimanianda, V., Winters, M.S., Fuller, K.K., Miley, M.D., White, S., McCarthy, J.W., Latgé, J.P., Feldmesser, M., et al. 2009. A role for the unfolded protein response (UPR) in virulence and antifungal susceptibility in Aspergillus fumigatus. PLoS Pathog. 5, e1000258.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Robert, V.A. and Casadevall, A. 2009. Vertebrate endothermy restricts most fungi as potential pathogens. J. Infect. Dis. 200, 1623–1626.

    Article  PubMed  Google Scholar 

  • Rocha, E.M., Garcia-Effron, G., Park, S., and Perlin, D.S. 2007. A Ser678Pro substitution in Fks1p confers resistance to echinocandin drugs in Aspergillus fumigatus. Antimicrob. Agents Chemother. 51, 4174–4176.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rocha, M.C., Godoy, K.F., de Castro, P.A., Hori, J.I., Bom, V.L., Brown, N.A., Cunha, A.F., Goldman, G.H., and Malavazi, I. 2015. The Aspergillus fumigatus pkcAG579R mutant is defective in the activation of the cell wall integrity pathway but is dispensable for virulence in a neutropenic mouse infection model. PLoS One 10, e0135195.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sasse, C., Bignell, E.M., Hasenberg, M., Haynes, K., Gunzer, M., Braus, G.H., and Krappmann, S. 2008. Basal expression of the Aspergillus fumigatus transcriptional activator CpcA is sufficient to support pulmonary aspergillosis. Fungal Genet. Biol. 45, 693–704.

    Article  PubMed  CAS  Google Scholar 

  • Schöbel, F., Ibrahim-Granet, O., Avé, P., Latgé, J.P., Brakhage, A.A., and Brock, M. 2007. Aspergillus fumigatus does not require fatty acid metabolism via isocitrate lyase for development of invasive aspergillosis. Infect. Immun. 75, 1237–1244.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schrettl, M., Beckmann, N., Varga, J., Heinekamp, T., Jacobsen, I.D., Jöchl, C., Moussa, T.A., Wang, S., Gsaller, F., Blatzer, M., et al. 2010. HapX-mediated adaption to iron starvation is crucial for virulence of Aspergillus fumigatus. PLoS Pathog. 6, e1001124.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schrettl, M., Bignell, E., Kragl, C., Joechl, C., Rogers, T., Arst, H.N. Jr., Haynes, K., and Haas, H. 2004. Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J. Exp. Med. 200, 1213–1219.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schrettl, M., Bignell, E., Kragl, C., Sabiha, Y., Loss, O., Eisendle, M., Wallner, A., Arst, H.N. Jr., Haynes, K., and Haas, H. 2007. Distinct roles for intra- and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathog. 3, 1195–1207.

    PubMed  CAS  Google Scholar 

  • Schrettl, M. and Haas, H. 2011. Iron homeostasis–Achilles’ heel of Aspergillus fumigatus? Curr. Opin. Microbiol. 14, 400–405.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schrettl, M., Kim, H.S., Eisendle, M., Kragl, C., Nierman, W.C., Heinekamp, T., Werner, E.R., Jacobsen, I., Illmer, P., Yi, H., et al. 2008. SreA-mediated iron regulation in Aspergillus fumigatus. Mol. Microbiol. 70, 27–43.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Soriani, F.M., Malavazi, I., da Silva Ferreira, M.E., Savoldi, M., Von Zeska Kress, M.R., de Souza Goldman, M.H., Loss, O., Bignell, E., and Goldman, G.H. 2008. Functional characterization of the Aspergillus fumigatus CRZ1 homologue, CrzA. Mol. Microbiol. 67, 1274–1291.

    Article  PubMed  CAS  Google Scholar 

  • Steinbach, W.J., Cramer, R.A. Jr., Perfect, B.Z., Asfaw, Y.G., Sauer, T.C., Najvar, L.K., Kirkpatrick, W.R., Patterson, T.F., Benjamin, D.K. Jr., Heitman, J., et al. 2006. Calcineurin controls growth, morphology, and pathogenicity in Aspergillus fumigatus. Eukaryot. Cell 5, 1091–1103.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Steinbach, W.J., Cramer, R.A. Jr., Perfect, B.Z., Henn, C., Nielsen, K., Heitman, J., and Perfect, J.R. 2007a. Calcineurin inhibition or mutation enhances cell wall inhibitors against Aspergillus fumigatus. Antimicrob. Agents Chemother. 51, 2979–2981.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Steinbach, W.J., Reedy, J.L., Cramer, R.A. Jr., Perfect, J.R., and Heitman, J. 2007b. Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat. Rev. Microbiol. 5, 418–430.

    Article  PubMed  CAS  Google Scholar 

  • Steinbach, J.W., Stevens, D.A., and Denning, D.W. 2003. Combination and sequential antifungal therapy for invasive Aspergillosis: Review of published in vitro and in vivo interactions and 6281 clinical cases from 1966 to 2001. Clin. Infect. Dis. 37(Suppl 3), S188–224.

    Article  PubMed  CAS  Google Scholar 

  • Valiante, V., Heinekamp, T., Jain, R., Härtl, A., and Brakhage, A.A. 2008. The mitogen-activated protein kinase MpkA of Aspergillus fumigatus regulates cell wall signaling and oxidative stress response. Fungal Genet. Biol. 45, 618–627.

    Article  PubMed  CAS  Google Scholar 

  • Valiante, V., Jain, R., Heinekamp, T., and Brakhage, A.A. 2009. The MpkA MAP kinase module regulates cell wall integrity signaling and pyomelanin formation in Aspergillus fumigatus. Fungal Genet. Biol. 46, 909–918.

    Article  PubMed  CAS  Google Scholar 

  • Valiante, V., Macheleidt, J., Föge, M., and Brakhage, A.A. 2015. The Aspergillus fumigatus cell wall integrity signaling pathway: drug target, compensatory pathways, and virulence. Front. Microbiol. 6, 325.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wezensky, S.J. and Cramer, R.A. Jr. 2014. Implications of hypoxic microenvironments during invasive aspergillosis. Med. Mycol. 49(Suppl 1), S120–S124.

    Article  Google Scholar 

  • Willger, S.D., Puttikamonkul, S., Kim, K.H., Burritt, J.B., Grahl, N., Metzler, L.J., Barbuch, R., Bard, M., Lawrence, C.B., and Cramer, R.A. Jr. 2008. A sterol-regulatory element binding protein is required for cell polarity, hypoxia adaptation, azole drug resistance, and virulence in Aspergillus fumigatus. PLoS Pathog. 4, e1000200.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Winkelströter, L.K., Bom, V.L., de Castro, P.A., Ramalho, L.N., Goldman, M.H., Brown, N.A., Rajendran, R., Ramage, G., Bovier, E., Dos Reis, T.F., et al. 2015a. High osmolarity glycerol response PtcB phosphatase is important for Aspergillus fumigatus virulence. Mol. Microbiol. 96, 42–54.

    Article  PubMed  CAS  Google Scholar 

  • Winkelströter, L.K., Dolan, S.K., Dos Reis, T., Bom, V.L., de Castro, P., Hagiwara, D., Alowni, R., Jones, G.W., Doyle, S., Brown, N.A., et al. 2015b. Systematic global analysis of genes encoding protein phosphatases in Aspergillus fumigatus. G3 (Bethesda). 5, 1525–1539.

    Article  Google Scholar 

  • Xue, T., Nguyen, C.K., Romans, A., and May, G.S. 2004. A mitogenactivated protein kinase that senses nitrogen regulates conidial germination and growth in Aspergillus fumigatus. Eukaryot. Cell 3, 557–560.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Neil A. Brown or Gustavo H. Goldman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, N.A., Goldman, G.H. The contribution of Aspergillus fumigatus stress responses to virulence and antifungal resistance. J Microbiol. 54, 243–253 (2016). https://doi.org/10.1007/s12275-016-5510-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-016-5510-4

Keywords

Navigation