Skip to main content
Log in

Identification of tyrosine 71 as a critical residue for the cytotoxic activity of Clostridium perfringens epsilon toxin towards MDCK cells

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Clostridium perfringens epsilon toxin (Etx) is an extremely potent toxin, causing fatal enterotoxaemia in many animals. Several amino acids in domains I and II have been proposed to be critical for Etx to interact with MDCK cells. However, the critical amino acids in domain III remain undefined. Therefore, we assessed the effects of aromatic amino acids in domain III on Etx activity in this study. All of the results indicated that Y71 was critical for the cytotoxic activity of Etx towards MDCK cells, and this activity was dependent on the existence of an aromatic ring residue in position 71. Additionally, mutations in Y71 did not affect the binding of Etx to MDCK cells, indicating that Y71 is not a receptor binding site for Etx. In summary, we identified an amino acid in domain III that is important for the cytotoxic activity of Etx, thereby providing information on the structure-function relationship of Etx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bokori-Brown, M., Kokkinidou, M.C., Savva, C.G., Fernandes da Costa, S., Naylor, C.E., Cole, A.R., Moss, D.S., Basak, A.K., and Titball, R.W. 2013. Clostridium perfringens epsilon toxin H149A mutant as a platform for receptor binding studies. Protein Sci. 22, 650–659.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bokori-Brown, M., Savva, C.G., Fernandes da Costa, S.P., Naylor, C.E., Basak, A.K., and Titball, R.W. 2011. Molecular basis of toxicity of Clostridium perfringens epsilon toxin. FEBS J. 278, 4589–4601.

    Article  CAS  PubMed  Google Scholar 

  • Borrmann, E., Gunther, H., and Kohler, H. 2001. Effect of Clostridium perfringens epsilon toxin on MDCK cells. FEMS Immunol. Med. Microbiol. 31, 85–92.

    Article  CAS  PubMed  Google Scholar 

  • Cole, A.R., Gibert, M., Popoff, M., Moss, D.S., Titball, R.W., and Basak, A.K. 2004. Clostridium perfringens epsilon-toxin shows structural similarity to the pore-forming toxin aerolysin. Nat. Struct. Mol. Biol. 11, 797–798.

    Article  CAS  PubMed  Google Scholar 

  • Ivie, S.E. and McClain, M.S. 2012. Identification of amino acids important for binding of Clostridium perfringens epsilon toxin to host cells and to HAVCR1. Biochemistry 51, 7588–7595.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Killian, J.A. and von Heijne, G. 2000. How proteins adapt to a membrane-water interface. Trends Biochem. Sci. 25, 429–434.

    Article  CAS  PubMed  Google Scholar 

  • Lindsay, C.D., Hambrook, J.L., and Upshall, D.G. 1995. Examination of toxicity of Clostridium perfringens-toxin in the MDCK cell line. Toxicol. In Vitro 9, 213–218.

    Article  CAS  PubMed  Google Scholar 

  • McDonel, J.L. 1986. Toxins of Clostridium perfringens types A, B, C, D and E, pp. 477–517. In F. Dorner, J.D. (ed.), Pharmacology of bacterial toxins. Pergamon Press, Oxford.

    Google Scholar 

  • Minami, J., Katayama, S., Matsushita, O., Matsushita, C., and Okabe, A. 1997. Lambda-toxin of Clostridium perfringens activates the precursor of epsilon-toxin by releasing its N- and C-terminal peptides. Microbiol. Immunol. 41, 527–535.

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto, O., Sumitani, K., Nakamura, T., Yamagami, S., Miyata, S., Itano, T., Negi, T., and Okabe, A. 2000. Clostridium perfringens epsilon toxin causes excessive release of glutamate in the mouse hippocampus. FEMS Microbiol. Lett. 189, 109–113.

    Article  CAS  PubMed  Google Scholar 

  • Miyata, S., Minami, J., Tamai, E., Matsushita, O., Shimamoto, S., and Okabe, A. 2002. Clostridium perfringens epsilon-toxin forms a heptameric pore within the detergent-insoluble microdomains of Madin-Darby canine kidney cells and rat synaptosomes. J. Biol. Chem. 277, 39463–39468.

    Article  CAS  PubMed  Google Scholar 

  • Nagahama, M., Ochi, S., and Sakurai, J. 1998. Assembly of Clostridium perfringens epsilon-toxin on MDCK cell membrane. J. Nat. Toxins 7, 291–302.

    CAS  PubMed  Google Scholar 

  • Oyston, P.C., Payne, D.W., Havard, H.L., Williamson, E.D., and Titball, R.W. 1998. Production of a non-toxic site-directed mutant of Clostridium perfringens epsilon-toxin which induces protective immunity in mice. Microbiology 144, 333–341.

    Article  CAS  PubMed  Google Scholar 

  • Payne, D. and Oyston, P. 1997. The Clostridium perfringens ε-toxin, pp. 439–447. In Rood, J.I., M.B.A., Songer, J.G., and Titball, R.W. (ed.), The clostridia: molecular biology and pathogenesis. Academic Press, London, United Kingdom.

    Chapter  Google Scholar 

  • Pelish, T.M. and McClain, M.S. 2009. Dominant-negative inhibitors of the Clostridium perfringens epsilon-toxin. J. Biol. Chem. 284, 29446–29453.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petit, L., Gibert, M., Gillet, D., Laurent-Winter, C., Boquet, P., and Popoff, M.R. 1997. Clostridium perfringens epsilon-toxin acts on MDCK cells by forming a large membrane complex. J. Bacteriol. 179, 6480–6487.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petit, L., Maier, E., Gibert, M., Popoff, M.R., and Benz, R. 2001. Clostridium perfringens epsilon toxin induces a rapid change of cell membrane permeability to ions and forms channels in artificial lipid bilayers. J. Biol. Chem. 276, 15736–15740.

    Article  CAS  PubMed  Google Scholar 

  • Popoff, M.R. 2011. Epsilon toxin: a fascinating pore-forming toxin. FEBS J. 278, 4602–4615.

    Article  CAS  PubMed  Google Scholar 

  • Robertson, S.L., Li, J., Uzal, F.A., and McClane, B.A. 2011. Evidence for a prepore stage in the action of Clostridium perfringens epsilon toxin. PLoS One 6, e22053.

    Article  Google Scholar 

  • Soler-Jover, A., Blasi, J., Gomez de Aranda, I., Navarro, P., Gibert, M., Popoff, M.R., and Martin-Satue, M. 2004. Effect of epsilon toxin-GFP on MDCK cells and renal tubules in vivo. J. Histochem. Cytochem. 52, 931–942.

    Article  CAS  PubMed  Google Scholar 

  • Songer, J.G. 1996. Clostridial enteric diseases of domestic animals. Clin. Microbiol. Rev. 9, 216–234.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsitrin, Y., Morton, C.J., el-Bez, C., Paumard, P., Velluz, M.C., Adrian, M., Dubochet, J., Parker, M.W., Lanzavecchia, S., and van der Goot, F.G. 2002. Conversion of a transmembrane to a watersoluble protein complex by a single point mutation. Nat. Struct. Biol. 9, 729–733.

    Article  CAS  PubMed  Google Scholar 

  • Uzal, F.A. and Songer, J.G. 2008. Diagnosis of Clostridium perfringens intestinal infections in sheep and goats. J. Vet. Diagn. Invest. 20, 253–265.

    Article  PubMed  Google Scholar 

  • Worthington, R.W. and Mulders, M.S. 1977. Physical changes in the epsilon prototoxin molecule of Clostridium perfringens during enzymatic activation. Infect. Immun. 18, 549–551.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Chang, J., Wang, F. et al. Identification of tyrosine 71 as a critical residue for the cytotoxic activity of Clostridium perfringens epsilon toxin towards MDCK cells. J Microbiol. 53, 141–146 (2015). https://doi.org/10.1007/s12275-015-4523-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-015-4523-8

Keywords

Navigation