Skip to main content
Log in

Characterization of a novel antigen of Mycobacterium tuberculosis K strain and its use in immunodiagnosis of tuberculosis

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Mycobacterium tuberculosis-specific antigens would be of great value in developing immunodiagnostic tests for tuberculosis (TB), but regional differences in molecular types of the organism may result in antigenic variation, which in turn affects the outcome of the tests. For example, the Beijing strains of M. tuberculosis are prevalent in East Asia, and in particular, the K strain and related strains of the Beijing family, are most frequently isolated during school outbreaks of TB in South Korea. From comparison of genome sequences between M. tuberculosis K strain and the H37Rv strain, a non-Beijing type, we identified a K strain-specific gene, InsB, which has substantial homology with the ESAT-6-like proteins. This study was, therefore, initiated to characterize the InsB protein for its immunogenicity in mice and to confirm its expression in TB patients by detecting antibodies to the protein. The InsB gene was cloned from M. tuberculosis K strain and expressed in Escherichia coli. The recombinant InsB protein was used for immunization of mice. All mice showed strong antibody responses to the InsB protein, and splenocytes stimulated with InsB showed strong IFN-γ and IL-17 responses and a weak IL-2 response, all of which have been implicated in disease expression and used for the immunodiagnosis of TB. Serum samples from TB patients also showed significant antibody responses to the InsB protein as compared to healthy control samples. These results indicate that the InsB protein is an M. tuberculosis K-strain-specific antigen that could further improve the current immunodiagnostic methods, especially for the South Korean population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basile, J.I., Geffner, L.J., Romero, M.M., Balboa, L., Sabio, Y., García, C., Ritacco, V., García, A., Cuffré, M., Abbate, E., and et al. 2011. Outbreaks of Mycobacterium tuberculosis MDR strains induce high IL-17 T-cell response in patients with MDR tuberculosis that is closely associated with high antigen load. J. Infect. Dis. 204, 1054–1064.

    Article  PubMed  CAS  Google Scholar 

  • Cruz, A., Khader, S.A., Torrado, E., Fraga, A., Pearl, J.E., Pedrosa, J., Cooper, A.M., and Castro, A.G. 2006. Cutting edge: IFN-gamma regulates the induction and expansion of IL-17-producing CD4 T cells during mycobacterial infection. J. Immunol. 177, 1416–1420.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, M.M. and Way, S.S. 2009. Interleukin-17 in host defence against bacterial, mycobacterial and fungal pathogens. Immunology 126, 177–185.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davidow, A., Kanaujia, G.V., Shi, L., Kaviar, J., Guo, X., Sung, N., Kaplan, G., Menzies, D., and Gennaro, M.L. 2005. Antibody profiles characteristic of Mycobacterium tuberculosis infection state. Infect. Immun. 73, 6846–6851.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Delogu, G., Fabiana, B., Hasnain, S.E., and Cataldi, A. 2008. Engimatic protein from the surface: the Erp, PE, and PPE protein families, pp. 133–151. In Daffé, M. and Reyrat, J.-M. (eds.), The Mycobacterial Cell Envelope. ASM Press, Washington, D.C., USA.

    Google Scholar 

  • Diel, R., Loddenkemper, R., Meywald-Walter, K., Gottschalk, R., and Nienhaus, A. 2009. Comparative performance of tuberculin skin test, QuantiFERON-TB-Gold In Tube assay, and T-Spot. TB Test in contact investigations for tuberculosis. Chest 135, 1010–1018.

    Article  PubMed  Google Scholar 

  • Eum, S.Y., Jeon, B.Y., Min, J.H., Kim, S.C., Cho, S., Park, S.K., and Cho, S.N. 2008. Tumor necrosis factor-alpha and interleukin-10 in whole blood is associated with disease progression in pulmonary multidrug-resistant tuberculosis patients. Respiration 76, 331–337.

    Article  PubMed  CAS  Google Scholar 

  • Flynn, J.L., Chan, J., Triebold, K.J., Dalton, D.K., Stewart, T.A., and Bloom, B.R. 1993. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178, 2249–2254.

    Article  PubMed  CAS  Google Scholar 

  • Greenaway, C., Lienhardt, C., Adegbola, R., Brusasca, P., McAdam, K., and Menzies, D. 2005. Humoral response to Mycobacterium tuberculosis antigens in patients with tuberculosis in the Gambia. Int. J. Tuberc. Lung Dis. 9, 1112–1119.

    PubMed  CAS  Google Scholar 

  • Guinn, K.M., Hickey, M.J., Mathur, S.K., Zakel, K.L., Grotzke, J.E., Lewinsohn, D.M., Smith, S., and Sherman, D.R. 2004. Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol. Microbiol. 51, 359–370.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jeon, B.Y., Kwak, J., Hahn, M.Y., Eum, S.Y., Yang, J., Kim, S.C., and Cho, S.N. 2012. In vivo characteristics of Korean Beijing Mycobacterium tuberculosis strain K1 in an aerosol challenge model and in the Cornell latent tuberculosis model. J. Med. Microbiol. 61, 1373–1379.

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann, S.H. 2001. How can immunology contribute to the control of tuberculosis? Nat. Rev. Immunol. 1, 20–30.

    Article  PubMed  CAS  Google Scholar 

  • Khader, S.A., Bell, G.K., Pearl, J.E., Fountain, J.J., Rangel-Moreno, J., Cilley, G.E., Shen, F., Eaton, S.M., Gaffen, S.L., Swain, S.L., and et al. 2007. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat. Immunol. 8, 369–377.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.J., Bai, G.H., Lee, H., Kim, H.J., Lew, W.J., Park, Y.K., and Kim, Y. 2001. Transmission of Mycobacterium tuberculosis among high school students in Korea. Int. J. Tuberc. Lung Dis. 5, 824–830.

    PubMed  CAS  Google Scholar 

  • Malek, T.R. and Bayer, A.L. 2004. Tolerance, not immunity, crucially depends on IL-2. Nat. Rev. Immunol. 4, 665–674.

    Article  PubMed  CAS  Google Scholar 

  • Millington, K.A., Innes, J.A., Hackforth, S., Hinks, T.S., Deeks, J.J., Dosanjh, D.P., Guyot-Revol, V., Gunatheesan, R., Klenerman, P., and Lalvani, A. 2007. Dynamic relationship between IFN-γ and IL-2 profile of Mycobacterium tuberculosis-specific T cells and antigen load. J. Immunol. 178, 5217–5226.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mori, T., Sakatani, M., Yamagishi, F., Takashima, T., Kawabe, Y., Nagao, K., Shigeto, E., Harada, N., Mitarai, S., Okada, M., and et al. 2004. Specific detection of tuberculosis infection: an interferon-gamma-based assay using new antigens. Am. J. Respir. Crit. Care Med. 170, 59–64.

    Article  PubMed  Google Scholar 

  • NúñezMartínez, O., Ripoll, N.C., Carneros, J.A., González, L.V., and Gregorio, H.G. 2001. Reactivation tuberculosis in a patient with anti-TNF-α treatment. Am. J. Gastroenterol. 96, 1665–1666.

    Google Scholar 

  • Ogawa, T., Uchida, H., Kusumoto, Y., Mori, Y., Yamamura, Y., and Hamada, S. 1991. Increase in tumor necrosis factor alpha- and interleukin-6-secreting cells in peripheral blood mononuclear cells from subjects infected with Mycobacterium tuberculosis. Infect. Immun. 59, 3021–3025.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pai, M., Riley, L.W., and Colford, J.M. 2004. Interferon-γ assays in the immunodiagnosis of tuberculosis: a systematic review. Lancet Infect. Dis. 4, 761–776.

    Article  PubMed  CAS  Google Scholar 

  • Sallusto, F., Lenig, D., Förster, R., Lipp, M., and Lanzavecchia, A. 1999. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712.

    Article  PubMed  CAS  Google Scholar 

  • Sampson, S.L. 2011. Mycobacterial PE/PPE proteins at the host-pathogen interface. Clin. Dev. Immunol. 497203, doi:10.1155/2011/497203.

    Google Scholar 

  • Sargentini, V., Mariotti, S., Carrara, S., Gagliardi, M.C., Teloni, R., Goletti, D., and Nisini, R. 2009. Cytometric detection of antigen-specific IFN-γ/IL-2 secreting cells in the diagnosis of tuberculosis. BMC Infect. Dis. 9, 99.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scriba, T.J., Kalsdorf, B., Abrahams, D.A., Isaacs, F., Hofmeister, J., Black, G., Hassan, H.Y., Wilkinson, R.J., Walzl, G., Gelderbloem, S.J., and et al. 2008. Distinct, specific IL-17- and IL-22-producing CD4+ T cell subsets contribute to the human anti-mycobacterial immune response. J. Immunol. 180, 1962–1970.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shin, A.R., Shin, S.J., Lee, K.S., Eom, S.H., Lee, S.S., Lee, B.S., Lee, J.S., Cho, S.N., and Kim, H.J. 2008. Improved sensitivity of diagnosis of tuberculosis in patients in Korea via a cocktail enzyme-linked immunosorbent assay containing the abundantly expressed antigens of the K strain of Mycobacterium tuberculosis. Clin. Vaccine Immunol. 15, 1788–1795.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Silva, V.M., Kanaujia, G., Gennaro, M.L., and Menzies, D. 2003. Factors associated with humoral response to ESAT-6, 38 kDa and 14 kDa in patients with a spectrum of tuberculosis. Int. J. Tuberc. Lung Dis. 7, 478–484.

    PubMed  CAS  Google Scholar 

  • Simeone, R., Bottai, D., and Brosch, R. 2009. ESX/type VII secretion systems and their role in host-pathogen interaction. Curr. Opin. Microbiol. 12, 4–10.

    Article  PubMed  CAS  Google Scholar 

  • Somerville, W., Thibert, L., Schwartzmann, K., and Behr, M.A. 2005. Extraction of Mycobacterium tuberculosis DNA: a question of containment. J. Cin. Microbiol. 43, 2966–2967.

    Google Scholar 

  • Steingart, K.R., Dendukuri, N., Henry, M., Schiller, I., Nahid, P., Hopewell, P.C., Ramsay, A., Pai, M., and Laal, S. 2009. Performance of purified antigens for serodiagnosis of pulmonary tuberculosis: a meta-analysis. Clin. Vaccine Immunol. 16, 260–276.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sutherland, J.S., Jong, B.C., Jeffries, D.J., Adetifa, I.M., and Ota, M.O. 2010. Production of TNF-α, IL-12(p40) and IL-17 can discriminate between active TB disease and latent infection in a West African cohort. PLoS ONE 5, e12365.

    Article  PubMed  PubMed Central  Google Scholar 

  • Takashima, T., Ueta, C., Tsuyuguchi, I., and Kishimoto, S. 1990. Production of tumor necrosis factor alpha by monocytes from patients with pulmonary tuberculosis. Infect. Immun. 58, 3286–3292.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Walzl, G., Ronacher, K., Hanekom, W., Scriba, T.J., and Zumla, A. 2011. Immunological biomarkers of tuberculosis. Nat. Rev. Immunol. 11, 343–354.

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (WHO). 2011. Global Tuberculosis Control, WHO Report 2011.

    Google Scholar 

  • Zganiacz, A., Santosuosso, M., Wang, J., Yang, T., Chen, L., Anzulovic, M., Alexander, S., Gicquel, B., Wan, Y., Bramson, J., and et al. 2004. TNF-α is a critical negative regulator of type 1 immune activation during intracellular bacterial infection. J. Clin. Invest. 113, 401–413.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung Jung Han or Sang-Nae Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, P.J., Kim, A.R., Salch, Y.P. et al. Characterization of a novel antigen of Mycobacterium tuberculosis K strain and its use in immunodiagnosis of tuberculosis. J Microbiol. 52, 871–878 (2014). https://doi.org/10.1007/s12275-014-4235-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-014-4235-5

Keywords

Navigation