Skip to main content
Log in

When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness

  • Review
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Most organisms on the planet have viruses that infect them. Viral infection may lead to cell death, or to a symbiotic relationship where the genomes of both virus and host replicate together. In the symbiotic state, both virus and cell potentially experience increased fitness as a result of the other. The viruses that infect bacteria, called bacteriophages (or phages), well exemplify the symbiotic relationships that can develop between viruses and their host. In this review, we will discuss the many ways that prophages, which are phage genomes integrated into the genomes of their hosts, influence bacterial behavior and virulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barondess, J.J. and Beckwith, J. 1990. A bacterial virulence determinant encoded by lysogenic coliphage lambda. Nature 346, 871–874.

    Article  CAS  PubMed  Google Scholar 

  • Barrangou, R. 2013. CRISPR-Cas systems and RNA-guided interference. Wiley Interdiscip. Rev. RNA 4, 267–278.

    Article  CAS  PubMed  Google Scholar 

  • Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A., and Horvath, P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712.

    Article  CAS  PubMed  Google Scholar 

  • Benchetrit, L.C., Gray, E.D., and Wannamaker, L.W. 1977. Hyaluronidase activity of bacteriophages of group A streptococci. Infect. Immun. 15, 527–532.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bensing, B.A., Siboo, I.R., and Sullam, P.M. 2001. Proteins PblA and PblB of Streptococcus mitis, which promote binding to human platelets, are encoded within a lysogenic bacteriophage. Infect. Immun. 69, 6186–6192.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bhaya, D., Davison, M., and Barrangou, R. 2011. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Ann. Rev. Gen. 45, 273–297.

    Article  CAS  Google Scholar 

  • Bondy-Denomy, J., Pawluk, A., Maxwell, K.L., and Davidson, A.R. 2013. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493, 429–432.

    Article  CAS  PubMed  Google Scholar 

  • Boyd, E.F. and Brüssow, H. 2002. Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol. 10, 521–529.

    Article  CAS  PubMed  Google Scholar 

  • Brouns, S.J.J., Jore, M.M., Lundgren, M., Westra, E.R., Slijkhuis, R.J.H., Snijders, A.P.L., Dickman, M.J., Makarova, K.S., Koonin, E.V., and van der Oost, J. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964.

    Article  CAS  PubMed  Google Scholar 

  • Bruttin, A., Desiere, F., Lucchini, S., Foley, S., and Brüssow, H. 1997. Characterization of the lysogeny DNA module from the temperate Streptococcus thermophilus bacteriophage phi Sfi21. Virology 233, 136–148.

    Article  CAS  PubMed  Google Scholar 

  • Brüssow, H., Canchaya, C., and Hardt, W.D. 2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68, 560–602, table of contents.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cady, K.C. and O’Toole, G.A. 2011. Non-identity-mediated CRISPR-bacteriophage interaction mediated via the Csy and Cas3 proteins. J. Bacteriol. 193, 3433–3445.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cady, K.C., Bondy-Denomy, J., Heussler, G.E., Davidson, A.R., and O’Toole, G.A. 2012. The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages. J. Bacteriol. 194, 5728–5738.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Canchaya, C., Proux, C., Fournous, G., Bruttin, A., and Brüssow, H. 2003. Prophage genomics. Microbiol. Mol. Biol. Rev. 67, 238–276, table of contents.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Casjens, S. 2003. Prophages and bacterial genomics: what have we learned so far? Mol. Microbiol. 49, 277–300.

    Article  CAS  PubMed  Google Scholar 

  • Casjens, S.R. 2005. Comparative genomics and evolution of the tailed-bacteriophages. Curr. Opin. Microbiol. 8, 451–458.

    Article  CAS  PubMed  Google Scholar 

  • Castillo, D., Espejo, R., and Middelboe, M. 2013. Genomic structure of bacteriophage 6H and its distribution as prophage in Flavobacterium psychrophilum strains. FEMS Microbiol. Lett. doi:10.1111/1574-6968.12342.

    Google Scholar 

  • Chopin, M.C., Chopin, A., and Bidnenko, E. 2005. Phage abortive infection in lactococci: variations on a theme. Curr. Opin. Microbiol. 8, 473–479.

    Article  CAS  PubMed  Google Scholar 

  • Clapper, B., Tu, A.H.T., Elgavish, A., and Dybvig, K. 2004. The vir gene of bacteriophage MAV1 confers resistance to phage infection on Mycoplasma arthritidis. J. Bacteriol. 186, 5715–5720.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cumby, N., Davidson, A.R., and Maxwell, K.L. 2012a. The moron comes of age. Bacteriophage 2, 225–228.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cumby, N., Edwards, A.M., Davidson, A.R., and Maxwell, K.L. 2012b. The bacteriophage HK97 gp15 moron element encodes a novel superinfection exclusion protein. J. Bacteriol. 194, 5012–5019.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dodd, I.B., Shearwin, K.E., and Egan, J.B. 2005. Revisited gene regulation in bacteriophage lambda. Curr. Opin. Genet. Dev. 15, 145–152.

    Article  CAS  PubMed  Google Scholar 

  • Edgar, R. and Qimron, U. 2010. The Escherichia coli CRISPR system protects from λ lysogenization, lysogens, and prophage induction. J. Bacteriol. 192, 6291–6294.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eklund, M.W., Poysky, F.T., Reed, S.M., and Smith, C.A. 1971. Bacteriophage and the toxigenicity of Clostridium botulinum type C. Science 172, 480–482.

    Article  CAS  PubMed  Google Scholar 

  • Engelberg-Kulka, H., Reches, M., Narasimhan, S., Schoulaker-Schwarz, R., Klemes, Y., Aizenman, E., and Glaser, G. 1998. rexB of bacteriophage lambda is an anti-cell death gene. Proc. Natl. Acad. Sci. USA 95, 15481–15486.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Figueroa-Bossi, N. and Bossi, L. 1999. Inducible prophages contribute to Salmonella virulence in mice. Mol. Microbiol. 33, 167–176.

    Article  CAS  PubMed  Google Scholar 

  • Freeman, V.J. 1951. Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. J. Bacteriol. 61, 675–688.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garneau, J.E., Dupuis, M.è., Villion, M., Romero, D.A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadán, A.H., and Moineau, S. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh, D., Roy, K., Williamson, K.E., White, D.C., Wommack, K.E., Sublette, K.L., and Radosevich, M. 2008. Prevalence of lysogeny among soil bacteria and presence of 16S rRNA and trzN genes in viral-community DNA. Appl. Environ. Microbiol. 74, 495–502.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hofer, B., Ruge, M., and Dreiseikelmann, B. 1995. The superinfection exclusion gene (sieA) of bacteriophage P22: identification and overexpression of the gene and localization of the gene product. J. Bacteriol. 177, 3080–3086.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jacobs-Sera, D., Marinelli, L.J., Bowman, C., Broussard, G.W., Guerrero Bustamante, C., Boyle, M.M., Petrova, Z.O., Dedrick, R.M., Pope, W.H., Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science Sea-Phages Program, et al. 2012. On the nature of mycobacteriophage diversity and host preference. Virology 434, 187–201.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang, W., Maniv, I., Arain, F., Wang, Y., Levin, B.R., and Marraffini, L.A. 2013. Dealing with the evolutionary downside of CRISPR immunity: bacteria and beneficial plasmids. PLoS Genet. 9, e1003844.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Juhala, R.J., Ford, M.E., Duda, R.L., Youlton, A., Hatfull, G.F., and Hendrix, R.W. 2000. Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J. Mol. Biol. 299, 27–51.

    Article  CAS  PubMed  Google Scholar 

  • Karaolis, D.K., Somara, S., Maneval, D.R., Johnson, J.A., and Kaper, J.B. 1999. A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Nature 399, 375–379.

    Article  CAS  PubMed  Google Scholar 

  • Kent, B.N. and Bordenstein, S.R. 2010. Phage WO of Wolbachia: lambda of the endosymbiont world. Trends Microbiol. 18, 173–181.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kotewicz, M., Chung, S., Takeda, Y., and Echols, H. 1977. Characterization of the integration protein of bacteriophage lambda as a site-specific DNA-binding protein. Proc. Natl. Acad. Sci. USA 74, 1511–1515.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Labrie, S.J., Samson, J.E., and Moineau, S. 2010. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317–327.

    Article  CAS  PubMed  Google Scholar 

  • Lu, M.J. and Henning, U. 1994. Superinfection exclusion by T-eventype coliphages. Trends Microbiol. 2, 137–139.

    Article  CAS  PubMed  Google Scholar 

  • Mahony, J., McGrath, S., Fitzgerald, G.F., and van Sinderen, D. 2008. Identification and characterization of lactococcal-prophage-carried superinfection exclusion genes. Appl. Environ. Microbiol. 74, 6206–6215.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maillou, J. and Dreiseikelmann, B. 1990. The sim gene of Escherichia coli phage P1: nucleotide sequence and purification of the processed protein. Virology 175, 500–507.

    Article  CAS  PubMed  Google Scholar 

  • Mali, P., Esvelt, K.M., and Church, G.M. 2013. Cas9 as a versatile tool for engineering biology. Nature Methods 10, 957–963.

    Article  CAS  PubMed  Google Scholar 

  • McGrath, S., Fitzgerald, G.F., and van Sinderen, D. 2002. Identification and characterization of phage-resistance genes in temperate lactococcal bacteriophages. Mol. Microbiol. 43, 509–520.

    Article  CAS  PubMed  Google Scholar 

  • Minot, S., Bryson, A., Chehoud, C., Wu, G.D., Lewis, J.D., and Bushman, F.D. 2013. Rapid evolution of the human gut virome. Proc. Natl. Acad. Sci. USA 110, 12450–12455.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Minot, S., Sinha, R., Chen, J., Li, H., Keilbaugh, S.A., Wu, G.D., Lewis, J.D., and Bushman, F.D. 2011. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 21, 1616–1625.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mirold, S., Rabsch, W., Rohde, M., Stender, S., Tschäpe, H., Rüssmann, H., Igwe, E., and Hardt, W.D. 1999. Isolation of a temperate bacteriophage encoding the type III effector protein SopE from an epidemic Salmonella typhimurium strain. Proc. Natl. Acad. Sci. USA 96, 9845–9850.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mitchell, J., Siboo, I.R., Takamatsu, D., Chambers, H.F., and Sullam, P.M. 2007. Mechanism of cell surface expression of the Streptococcus mitis platelet binding proteins PblA and PblB. Mol. Microbiol. 64, 844–857.

    Article  CAS  PubMed  Google Scholar 

  • Modi, S.R., Lee, H.H., Spina, C.S., and Collins, J.J. 2013. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature 499, 219–222.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morgan, G.J., Hatfull, G.F., Casjens, S., and Hendrix, R.W. 2002. Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. J. Mol. Biol. 317, 337–359.

    Article  CAS  PubMed  Google Scholar 

  • Müller, M.G., Ing, J.Y., Cheng, M.K.W., Flitter, B.A., and Moe, G.R. 2013. Identification of a phage-encoded Ig-binding protein from invasive Neisseria meningitidis. J. Immunol. 191, 3287–3296.

    Article  PubMed  Google Scholar 

  • Nakayama, K., Kanaya, S., Ohnishi, M., Terawaki, Y., and Hayashi, T. 1999. The complete nucleotide sequence of phi CTX, a cytotoxinconverting phage of Pseudomonas aeruginosa: implications for phage evolution and horizontal gene transfer via bacteriophages. Mol. Microbiol. 31, 399–419.

    Article  CAS  PubMed  Google Scholar 

  • Nesper, J., Blass, J., Fountoulakis, M., and Reidl, J. 1999. Characterization of the major control region of Vibrio cholerae bacteriophage K139: immunity, exclusion, and integration. J. Bacteriol. 181, 2902–2913.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Newton, G.J., Daniels, C., Burrows, L.L., Kropinski, A.M., Clarke, A.J., and Lam, J.S. 2001. Three-component-mediated serotype conversion in Pseudomonas aeruginosa by bacteriophage D3. Mol. Microbiol. 39, 1237–1247.

    Article  CAS  PubMed  Google Scholar 

  • Nozawa, T., Furukawa, N., Aikawa, C., Watanabe, T., Haobam, B., Kurokawa, K., Maruyama, F., and Nakagawa, I. 2011. CRISPR inhibition of prophage acquisition in Streptococcus pyogenes. PLoS One 6, e19543.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Brien, A.D., Newland, J.W., Miller, S.F., Holmes, R.K., Smith, H.W., and Formal, S.B. 1984. Shiga-like toxin-converting phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. Science 226, 694–696.

    Article  PubMed  Google Scholar 

  • Oliver, K.M., Degnan, P.H., Hunter, M.S., and Moran, N.A. 2009. Bacteriophages encode factors required for protection in a symbiotic mutualism. Science 325, 992–994.

    Article  CAS  PubMed  Google Scholar 

  • Pedulla, M.L., Ford, M.E., Houtz, J.M., Karthikeyan, T., Wadsworth, C., Lewis, J.A., Jacobs-Sera, D., Falbo, J., Gross, J., Pannunzio, N.R., and et al. 2003. Origins of highly mosaic mycobacteriophage genomes. Cell 113, 171–182.

    Article  CAS  PubMed  Google Scholar 

  • Reeve, J.N. and Shaw, J.E. 1979. Lambda encodes an outer membrane protein: the lom gene. Mol. Gen. Genet. 172, 243–248.

    Article  CAS  PubMed  Google Scholar 

  • Reidl, J. and Mekalanos, J.J. 1995. Characterization of Vibrio cholerae bacteriophage K139 and use of a novel mini-transposon to identify a phage-encoded virulence factor. Mol. Microbiol. 18, 685–701.

    Article  CAS  PubMed  Google Scholar 

  • Reyes, A., Wu, M., McNulty, N.P., Rohwer, F.L., and Gordon, J.I. 2013. Gnotobiotic mouse model of phage-bacterial host dynamics in the human gut. Proc. Natl. Acad. Sci. USA 110, 20236–20241.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rohwer, F. and Thurber, R.V. 2009. Viruses manipulate the marine environment. Nature 459, 207–212.

    Article  CAS  PubMed  Google Scholar 

  • Samson, J.E., Magadán, A.H., Sabri, M., and Moineau, S. 2013. Revenge of the phages: defeating bacterial defences. Nat. Rev. Microbiol. 11, 675–687.

    Article  CAS  PubMed  Google Scholar 

  • Schuch, R. and Fischetti, V.A. 2009. The secret life of the anthrax agent Bacillus anthracis: bacteriophage-mediated ecological adaptations. PLoS One 4, e6532.

    Article  PubMed Central  PubMed  Google Scholar 

  • Seed, K.D., Lazinski, D.W., Calderwood, S.B., and Camilli, A. 2013. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature 494, 489–491.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seo, H.S., Xiong, Y.Q., Mitchell, J., Seepersaud, R., Bayer, A.S., and Sullam, P.M. 2010. Bacteriophage lysin mediates the binding of Streptococcus mitis to human platelets through interaction with fibrinogen. PLoS Pathog. 6, e1001047.

    Article  PubMed Central  PubMed  Google Scholar 

  • Shinedling, S., Parma, D., and Gold, L. 1987. Wild-type bacteriophage T4 is restricted by the lambda rex genes. J. Virol. 61, 3790–3794.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Slavcev, R.A. and Hayes, S. 2003. Stationary phase-like properties of the bacteriophage lambda Rex exclusion phenotype. Mol. Genet. Genomics 269, 40–48.

    CAS  PubMed  Google Scholar 

  • Snyder, L. 1995. Phage-exclusion enzymes: a bonanza of biochemical and cell biology reagents? Mol. Microbiol. 15, 415–420.

    Article  CAS  PubMed  Google Scholar 

  • Soutourina, O.A., Monot, M., Boudry, P., Saujet, L., Pichon, C., Sismeiro, O., Semenova, E., Severinov, K., Le Bouguenec, C., Coppee, J.Y., and et al. 2013. Genome-wide identification of regulatory RNAs in the human pathogen Clostridium difficile. PLoS Genet. 9, e1003493.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stern, A., Keren, L., Wurtzel, O., Amitai, G., and Sorek, R. 2010. Selftargeting by CRISPR: gene regulation or autoimmunity? Trends Genet. 26, 335–340.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun, X., Göhler, A., Heller, K.J., and Neve, H. 2006. The ltp gene of temperate Streptococcus thermophilus phage TP-J34 confers superinfection exclusion to Streptococcus thermophilus and Lactococcus lactis. Virology 350, 146–157.

    Article  CAS  PubMed  Google Scholar 

  • Suttle, C.A. 2005. Viruses in the sea. Nature 437, 356–361.

    Article  CAS  PubMed  Google Scholar 

  • Tyler, J.S., Mills, M.J., and Friedman, D.I. 2004. The operator and early promoter region of the Shiga toxin type 2-encoding bacteriophage 933W and control of toxin expression. J. Bacteriol. 186, 7670–7679.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uc-Mass, A., Loeza, E.J., la Garza, de, M., Guarneros, G., Hernández-Sánchez, J., and Kameyama, L. 2004. An orthologue of the cor gene is involved in the exclusion of temperate lambdoid phages. Evidence that Cor inactivates FhuA receptor functions. Virology 329, 425–433.

    CAS  Google Scholar 

  • Vaca-Pacheco, S., Paniagua Contreras, G.L., García González, O., and la Garza, de, M. 1999. The clinically isolated FIZ15 bacteriophage causes lysogenic conversion in Pseudomonas aeruginosa PAO1. Curr. Microbiol. 38, 239–243.

    Article  CAS  PubMed  Google Scholar 

  • Vica Pacheco, S., García González, O., and Paniagua Contreras, G.L. 1997. The lom gene of bacteriophage lambda is involved in Escherichia coli K12 adhesion to human buccal epithelial cells. FEMS Microbiol. Lett. 156, 129–132.

    Article  CAS  PubMed  Google Scholar 

  • Vostrov, A.A., Vostrukhina, O.A., Svarchevsky, A.N., and Rybchin, V.N. 1996. Proteins responsible for lysogenic conversion caused by coliphages N15 and phi80 are highly homologous. J. Bacteriol. 178, 1484–1486.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waldor, M. K. and Mekalanos, J. J. 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272, 1910–1914.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Kim, Y., Ma, Q., Hong, S.H., Pokusaeva, K., Sturino, J.M., and Wood, T. K. 2010. Cryptic prophages help bacteria cope with adverse environments. Nature Commun. 1, 147.

    Article  Google Scholar 

  • Wang, T., Wei, J.J., Sabatini, D.M., and Lander, E.S. 2014. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80–84.

    Article  CAS  PubMed  Google Scholar 

  • Weldon, S.R., Strand, M.R., and Oliver, K.M. 2013. Phage loss and the breakdown of a defensive symbiosis in aphids. Proc. R. Soc. B 280, 20122103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Winstanley, C., Langille, M.G.I., Fothergill, J.L., Kukavica-Ibrulj, I., Paradis-Bleau, C., Sanschagrin, F., Thomson, N.R., Winsor, G.L., Quail, M.A., Lennard, N., and et al. 2009. Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa. Genome Res. 19, 12–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wong, C.S., Jelacic, S., Habeeb, R.L., Watkins, S.L., and Tarr, P.I. 2000. The risk of the hemolytic-uremic syndrome after antibiotic treatment of Escherichia coli O157:H7 infections. N. Engl. J. Med. 342, 1930–1936.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto, T., Obana, N., Yee, L.M., Asai, K., Nomura, N., and Nakamura, K. 2014. SP10 infectivity is aborted after bacteriophage SP10 infection induces nonA transcription on the prophage SPβ region of the Bacillus subtilis genome. J. Bacteriol. 196, 693–706.

    Article  CAS  PubMed  Google Scholar 

  • Yasmin, A., Kenny, J.G., Shankar, J., Darby, A.C., Hall, N., Edwards, C., and Horsburgh, M.J. 2010. Comparative genomics and transduction potential of Enterococcus faecalis temperate bacteriophages. J. Bacteriol. 192, 1122–1130.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zegans, M.E., Wagner, J.C., Cady, K.C., Murphy, D.M., Hammond, J.H., and O’Toole, G.A. 2009. Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa. J. Bacteriol. 191, 210–219.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan R. Davidson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bondy-Denomy, J., Davidson, A.R. When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness. J Microbiol. 52, 235–242 (2014). https://doi.org/10.1007/s12275-014-4083-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-014-4083-3

Keywords

Navigation