Skip to main content
Log in

Use of denaturing high-performance liquid chromatography (DHPLC) to characterize the bacterial and fungal airway microbiota of cystic fibrosis patients

  • Microbial Pathogenesis and Host-Microbe Interaction
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the use of denaturing high-performance liquid chromatography (DHPLC) to characterize cystic fibrosis (CF) airway microbiota including both bacteria and fungi. DHPLC conditions were first optimized using a mixture of V6, V7 and V8 region 16S rRNA gene PCR amplicons from 18 bacterial species commonly found in CF patients. Then, the microbial diversity of 4 sputum samples from 4 CF patients was analyzed using cultural methods, cloning/sequencing (for bacteria only) and DHPLC peak fraction collection/sequencing. DHPLC analysis allowed identifying more bacterial and fungal species than the classical culture methods, including well-recognized pathogens such as Pseudomonas aeruginosa. Even if a lower number of bacterial Operational Taxonomic Units (OTUs) was identified by DHPLC, it allowed to find OTUs unidentified by cloning/sequencing. The combination of both techniques permitted to correlate the majority of DHPLC peaks to defined OTUs. Finally, although Aspergillus fumigatus detection using DHPLC can still be improved, this technique clearly allowed to identify a higher number of fungal species versus classical culture-based methods. To conclude, DHPLC provided meaningful additional data concerning pathogenic bacteria and fungi as well as fastidious microorganisms present within the CF respiratory tract. DHPLC can be considered as a complementary technique to culture-dependent analyses in routine microbiological laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anonyme. 2010. Recommandations pour l’analyse bactériologique des prélèvements d’expectoration chez les patients atteints de mucoviscidose, pp. 99–104. In REMIC-Référentiel en microbiologie médicale. Société Française de Microbiologie, Paris, France.

  • Bigot, A. and Charbit, A. 2009. Isolation of plasmids, pp. 127–146. In Dongyou Liu CRC Press (ed.), Handbook of Nucleic Acid Purification. London, United Kingdom.

    Google Scholar 

  • Bittar, F., Richet, H., Dubus, J.C., Reynaud-Gaubert, M., Stremler, N., Sarles, J., Raoult, D., and Rolain, J.M. 2008. Molecular detection of multiple emerging pathogens in sputa from cystic fibrosis patients. PLoS One 3, e2908.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brook, I. and Fink, R. 1983. Transtracheal aspiration in pulmonary infection in children with cystic fibrosis. Eur. J. Respir. Dis. 64, 51–57.

    PubMed  CAS  Google Scholar 

  • Canton, R. and del Campo, R. 2010. Cystic fibrosis: deciphering the complexity. Clin. Microbiol. Infect. 16, 793–797.

    Article  PubMed  CAS  Google Scholar 

  • Cimon, B., Symoens, F., Zouhair, R., Chabasse, D., Nolard, N., Defontaine, A., and Bouchara, J.P. 2001. Molecular epidemiology of airway colonisation by Aspergillus fumigatus in cystic fibrosis patients. J. Med. Microbiol. 50, 367–374.

    PubMed  CAS  Google Scholar 

  • Cole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J., Kulam-Syed-Mohideen, A.S., McGarrell, D.M., Marsh, T., Garrity, G.M., and et al. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, D141–145.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cox, M.J., Allgaier, M., Taylor, B., Baek, M.S., Huang, Y.J., Daly, R.A., Karaoz, U., Andersen, G.L., Brown, R., Fujimura, K.E., and et al. 2010. Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients. PLoS One 5, e11044.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Delavenne, E., Mounier, J., Asmani, K., Jany, J.L., Barbier, G., and Le Blay, G. 2011. Fungal diversity in cow, goat and ewe milk. Int. J. Food Microbiol. 151, 247–251.

    Article  PubMed  Google Scholar 

  • Duan, K., Dammel, C., Stein, J., Rabin, H., and Surette, M.G. 2003. Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol. Microbiol. 50, 1477–1491.

    Article  PubMed  CAS  Google Scholar 

  • Filkins, L.M., Hampton, T.H., Gifford, A.H., Gross, M.J., Hogan, D.A., Sogin, M.L., Morrison, H.G., Paster, B.J., and O’Toole, G.A. 2012. Prevalence of streptococci and increased polymicrobial diversity associated with cystic fibrosis patient stability. J. Bacteriol. 194, 4709–4717.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gevers, D., Huys, G., and Swings, J. 2001. Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol. Lett. 205, 31–36.

    Article  PubMed  CAS  Google Scholar 

  • Goddard, A.F., Staudinger, B.J., Dowd, S.E., Joshi-Datar, A., Wolcott, R.D., Aitken, M.L., Fligner, C.L., and Singh, P.K. 2012. Direct sampling of cystic fibrosis lungs indicates that DNA-based analyses of upper-airway specimens can misrepresent lung microbiota. Proc. Natl. Acad. Sci. USA 109, 13769–13774.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gueho, E., Midgley, G., and Guillot, J. 1996. The genus Malassezia with description of four new species. Antonie van Leeuwenhoek 69, 337–355.

    Article  PubMed  CAS  Google Scholar 

  • Guss, A.M., Roeselers, G., Newton, I.L., Young, C.R., Klepac-Ceraj, V., Lory, S., and Cavanaugh, C.M. 2011. Phylogenetic and metabolic diversity of bacteria associated with cystic fibrosis. ISME J. 5, 20–29.

    Article  PubMed Central  PubMed  Google Scholar 

  • Harris, J.K., De Groote, M.A., Sagel, S.D., Zemanick, E.T., Kapsner, R., Penvari, C., Kaess, H., Deterding, R.R., Accurso, F.J., and Pace, N.R. 2007. Molecular identification of bacteria in bronchoalveolar lavage fluid from children with cystic fibrosis. Proc. Natl. Acad. Sci. USA 104, 20529–20533.

    Article  PubMed Central  PubMed  Google Scholar 

  • Klepac-Ceraj, V., Lemon, K.P., Martin, T.R., Allgaier, M., Kembel, S.W., Knapp, A.A., Lory, S., Brodie, E.L., Lynch, S.V., Bohannan, B.J., and et al. 2010. Relationship between cystic fibrosis respiratory tract bacterial communities and age, genotype, antibiotics and Pseudomonas aeruginosa. Environ. Microbiol. 12, 1293–1303.

    Article  PubMed  CAS  Google Scholar 

  • Koenig, K. 1995. Guide de mycologie médicale, pp. 1–288. In Ellipses Marketing (ed.). Paris, France.

  • Komiyama, K., Habbick, B.F., and Gibbons, R.J. 1987. Interbacterial adhesion between Pseudomonas aeruginosa and indigenous oral bacteria isolated from patients with cystic fibrosis. Can. J. Microbiol. 33, 27–32.

    Article  PubMed  CAS  Google Scholar 

  • Kondori, N., Gilljam, M., Lindblad, A., Jonsson, B., Moore, E.R., and Wenneras, C. 2011. High rate of Exophiala dermatitidis recovery in the airways of patients with cystic fibrosis is associated with pancreatic insufficiency. J. Clin. Microbiol. 49, 1004–1009.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lipuma, J.J. 2010. The changing microbial epidemiology in cystic fibrosis. Clin. Microbiol. Rev. 23, 299–323.

    Article  PubMed Central  PubMed  Google Scholar 

  • Macheras, E., Roux, A.L., Bastian, S., Leao, S.C., Palaci, M., Sivadon-Tardy, V., Gutierrez, C., Richter, E., Rusch-Gerdes, S., Pfyffer, G., and et al. 2010. Multilocus sequence analysis and rpoB sequencing of Mycobacterium abscessus (sensu lato) strains. J. Clin. Microbiol. 49, 491–499.

    Article  PubMed  CAS  Google Scholar 

  • Marzorati, M., Wittebolle, L., Boon, N., Daffonchio, D., and Verstraete, W. 2008. How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ. Microbiol. 10, 1571–1581.

    Article  PubMed  CAS  Google Scholar 

  • Moissenet, D., Bingen, E., Arlet, G., and Vu-Thien, H. 2005. Use of 16S rRNA gene sequencing for identification of “Pseudomonas-like” isolates from sputum of patients with cystic fibrosis. Pathol. Biol. (Paris) 53, 500–502.

    Article  CAS  Google Scholar 

  • Moss, R.B. 2010. Allergic bronchopulmonary aspergillosis and Aspergillus infection in cystic fibrosis. Curr. Opin. Pulm. Med. 16, 598–603.

    Article  PubMed  Google Scholar 

  • Nagano, Y., Elborn, J.S., Millar, B.C., Walker, J.M., Goldsmith, C.E., Rendall, J., and Moore, J.E. 2009. Comparison of techniques to examine the diversity of fungi in adult patients with cystic fibrosis. Med. Mycol. 48, 166–176 e161.

    Article  CAS  Google Scholar 

  • Nazaret, S., Assade, F., Brothier, E., Freydiere, A.M., Bellon, G., and Cournoyer, B. 2009. RISA-HPLC analysis of lung bacterial colonizers of cystic fibrosis children. J. Microbiol. Methods 76, 58–69.

    Article  PubMed  CAS  Google Scholar 

  • Nixon, G.M., Armstrong, D.S., Carzino, R., Carlin, J.B., Olinsky, A., Robertson, C.F., and Grimwood, K. 2001. Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis. J. Pediatr. 138, 699–704.

    Article  PubMed  CAS  Google Scholar 

  • Parkins, M.D., Sibley, C.D., Surette, M.G., and Rabin, H.R. 2008. The Streptococcus milleri group-an unrecognized cause of disease in cystic fibrosis: a case series and literature review. Pediatr. Pulmonol. 43, 490–497.

    Article  PubMed  Google Scholar 

  • Rogers, G.B., Carroll, M.P., Serisier, D.J., Hockey, P.M., Jones, G., and Bruce, K.D. 2004. Characterization of bacterial community diversity in cystic fibrosis lung infections by use of 16S ribosomal DNA terminal restriction fragment length polymorphism profiling. J. Clin. Microbiol. 42, 5176–5183.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rogers, G.B., Carroll, M.P., Serisier, D.J., Hockey, P.M., Jones, G., Kehagia, V., Connett, G.J., and Bruce, K.D. 2006. Use of 16S rRNA gene profiling by terminal restriction fragment length polymorphism analysis to compare bacterial communities in sputum and mouthwash samples from patients with cystic fibrosis. J. Clin. Microbiol. 44, 2601–2604.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sibley, C.D., Parkins, M.D., Rabin, H.R., Duan, K., Norgaard, J.C., and Surette, M.G. 2008. A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients. Proc. Natl. Acad. Sci. USA 105, 15070–15075.

    Article  PubMed Central  PubMed  Google Scholar 

  • Southern, K.W., Munck, A., Pollitt, R., Travert, G., Zanolla, L., Dankert-Roelse, J., and Castellani, C. 2007. A survey of newborn screening for cystic fibrosis in Europe. J. Cyst. Fibros 6, 57–65.

    Article  PubMed  CAS  Google Scholar 

  • Tunney, M.M., Field, T.R., Moriarty, T.F., Patrick, S., Doering, G., Muhlebach, M.S., Wolfgang, M.C., Boucher, R., Gilpin, D.F., McDowell, A., and et al. 2008. Detection of anaerobic bacteria in high numbers in sputum from patients with cystic fibrosis. Am. J. Respir. Crit. Care Med. 177, 995–1001.

    Article  PubMed  Google Scholar 

  • Tunney, M.M., Klem, E.R., Fodor, A.A., Gilpin, D.F., Moriarty, T.F., McGrath, S.J., Muhlebach, M.S., Boucher, R.C., Cardwell, C., Doering, G., and et al. 2011. Use of culture and molecular analysis to determine the effect of antibiotic treatment on microbial community diversity and abundance during exacerbation in patients with cystic fibrosis. Thorax 66, 579–584.

    Article  PubMed  CAS  Google Scholar 

  • van der Gast, C.J., Walker, A.W., Stressmann, F.A., Rogers, G.B., Scott, P., Daniels, T.W., Carroll, M.P., Parkhill, J., and Bruce, K.D. 2011. Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities. ISME J. 5, 780–791.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wagner, A.O., Malin, C., and Illmer, P. 2009. Application of denaturing high-performance liquid chromatography in microbial ecology: fermentor sludge, compost, and soil community profiling. Appl. Environ. Microbiol. 75, 956–964.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhao, J., Schloss, P.D., Kalikin, L.M., Carmody, L.A., Foster, B.K., Petrosino, J.F., Cavalcoli, J.D., VanDevanter, D.R., Murray, S., Li, J.Z., and et al. 2012. Decade-long bacterial community dynamics in cystic fibrosis airways. Proc. Natl. Acad. Sci. USA 109, 5809–5814.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geneviève Héry-Arnaud.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mounier, J., Gouëllo, A., Keravec, M. et al. Use of denaturing high-performance liquid chromatography (DHPLC) to characterize the bacterial and fungal airway microbiota of cystic fibrosis patients. J Microbiol. 52, 307–314 (2014). https://doi.org/10.1007/s12275-014-3425-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-014-3425-5

Keywords

Navigation