Skip to main content
Log in

Sunxiuqinia dokdonensis sp. nov., isolated from deep sub-seafloor sediment

  • Microbial Systematics and Evolutionary Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

A novel facultatively anaerobic strain DH1T was isolated from deep sub-seafloor sediment at a depth of 900 m below the seafloor off Seo-do (the west part of Dokdo Island) in the East Sea of the Republic of Korea. The new strain was characterized using polyphasic approaches. The isolate was Gram-stain-negative, motile by gliding, non-spore-forming rods, oxidase-negative, and catalase-positive; and formed colonies of orange-red color. The NaCl range for growth was 0.5–7.0% (w/v) and no growth was observed in the absence of NaCl. The isolate grew optimally at 30°C, with 2% (w/v) NaCl and at pH 7. The cell-wall hydrolysates contained ribose as a major sugar. The DNA G+C content was 40.8 mol%. The closest related strains are Sunxiuqinia faeciviva JAM-BA0302T and Sunxiuqinia elliptica DQHS-4T (97.9 and 96.3% sequence similarity, respectively). The level of DNA-DNA relatedness between strain DH1T and S. faeciviva JAM-BA0302T was around 41% (but only 6% between DH1T and S. elliptica DQHS-4T). The major cellular fatty acids of the isolate were contained iso-C15:0 (25.9%), anteiso-C15:0 (16.7%), and summed feature 9 (comprising C16:0 3-OH and/or unknown fatty acid of dimethylacetal ECL 17.157; 13.2%). The predominant menaquinone was MK-7. On the basis of polyphasic evidence from this study, the isolate was considered to represent a novel species of the genus Sunxiuqinia, for which the name Sunxiuqinia dokdonensis sp. nov. is proposed; the type strain is DH1T (=KCTC 32503T =CGMCC 1.12676T =JCM 19380T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bale, S.J., Goodman, K., Rochelle, P.A., Marchesi, J.R., Fry, J.C., Weightman, A.J., and Parkes, R.J. 1997. Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan sea. Int. J. Syst. Bacteriol.47, 515–521.

    Article  CAS  PubMed  Google Scholar 

  • Batzke, A., Engelen, B., Sass, H., and Cypionka, H. 2007. Phylogenetic and physiological diversity of cultured deep-biosphere bacteria from Equatorial Pacific Ocean and Peru Margin sediments. Geomicrobiol. J.24, 261–273.

    Article  CAS  Google Scholar 

  • Becker, B., Lechevalier, M.P., and Lechevalier, H.A. 1965. Chemical composition of cell-wall preparations from strains of various form-genera of aerobic actinomycetes. Appl. Microbiol.13, 236–243.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benson, D., Lipman, D.J., and Olstell, J. 1993. Genbank. Nucleic Acids Res.21, 2963–2965.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bowman, J.P. 2000. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int. J. Syst. Evol. Microbiol.50, 1861–1868.

    CAS  PubMed  Google Scholar 

  • Cho, J.C. and Giovannoni, S.J. 2003. Parvularcula bermudensis gen. nov., sp. nov., a marine bacterium that forms a deep branch in the α-Proteobacteria. Int. J. Syst. Evol. Microbiol.53, 1031–1036.

    Article  CAS  PubMed  Google Scholar 

  • D’Hondt, S., Spivack, A.J., Pockalny, R., Ferdelman, T.G., Fischer, J.P., Kallmeyer, J., Abrams, L.J., Smith, D.C., Graham, D., Hasiuk, F., andet al. 2009. Subseafloor sedimentary life in the south pacific gyre. Proc. Natl. Acad. Sci. USA106, 11651–11656.

    Article  PubMed  Google Scholar 

  • Ezaki, T., Hashimoto, Y., and Yabuuchi, E. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol39, 224–229.

    Article  Google Scholar 

  • Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol.17, 368–376.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution39, 783–791.

    Article  Google Scholar 

  • Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool.20, 406–416.

    Article  Google Scholar 

  • Gerhardt, P., Murray, R.G.E., Wood, W.A., and Krieg, N.R. 1994. Methods for general and molecular bacteriology. American Society for Microbiology, Washington, D.C., USA.

    Google Scholar 

  • Gomori, G. 2010. Preparation of Buffers for Use in Enzyme Studies, pp. 721–724. In Lundblad, R.L. and Macdonald, F.M. (eds.), Handbook of Biochemistry and Molecular Biology, 4th ed. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Heimbrook, M.E., Wang, W.L.L., and Campbell, G. 1989. Staining bacterial flagella easily. J. Clin. Microbiol.27, 2612–2615.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hungate, R.E. 1969. A roll tube method for cultivation of strict anaerobes. Methods Microbiol.3B, 117–132.

    CAS  Google Scholar 

  • Kendall, M.M., Liu, Y., Sieprawska-Lupa, M., Stetter, K.O., Whitman, W.B., and Boone, D.R. 2006. Methanococcus aeolicus sp. nov., a mesophilic, methanogenic archaeon from shallow and deep marine sediments. Int. J. Syst. Evol. Microbiol.56, 1525–1529.

    Article  CAS  PubMed  Google Scholar 

  • Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., andet al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol.62, 716–721.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi, T., Koide, O., Mori, K., Shimamura, S., Matsuura, T., Miura, T., Takaki, Y., Morono, Y., Nunoura, T., Imachi, H., andet al. 2008. Phylogenetic and enzymatic diversity of deep subseafloor aerobic microorganisms in organics- and methane-rich sediments off Shimokita Peninsula. Extremophiles.12, 519–527.

    Article  CAS  PubMed  Google Scholar 

  • Lee, G.H., Rhee, M.S., Chang, D.H., Lee, J., Kim, S., Yoon, M.H., and Kim, B.C. 2013a. Oscillibacter ruminantium sp. nov., isolated from the rumen of Korean native cattle. Int. J. Syst. Evol. Microbiol.63, 1942–1946.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J.H., Kumar, S., Lee, G.H., Chang, D.H., Rhee, M.S., Yoon, M.H., and Kim, B.C. 2013b. Methanobrevibacter boviskoreani sp. nov., isolated from the rumen of Korean native cattle. Int. J. Syst. Evol. Microbiol.63, 4196–4201.

    Article  PubMed  Google Scholar 

  • Mesbah, M., Premachandran, U., and Whitman, W.B. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by highperformance liquid chromatography. Int. J. Syst. Bacteriol.39, 159–167.

    Article  CAS  Google Scholar 

  • Mikucki, J.A., Liu, Y., Delwiche, M., Colwell, F.S., and Boone, D.R. 2003. Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description of Methanoculleus submarinus sp. nov. Appl. Environ. Microbiol.69, 3311–3316.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parkes, R.J., Sellek, G., Webster, G., Martin, D., Anders, E., Weightman, A.J., and Sass, H. 2009. Culturable prokaryotic diversity of deep, gas hydrate sediments: First use of a continuous high-pressure, anaerobic, enrichment and isolation system for subseafloor sediments (deepisobug). Environ. Microbiol.11, 3140–3153.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qu, L., Zhu, F., Hong, X., Gao, W., Chen, J., and Sun, X. 2011. Sunxiuqinia elliptica gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from sediment in a sea cucumber farm. Int. J. Syst. Evol. Microbiol.61, 2885–2889.

    Article  CAS  PubMed  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol.4, 406–425.

    CAS  Google Scholar 

  • Takai, K., Abe, M., Miyazaki, M., Koide, O., Nunoura, T., Imachi, H., Inagaki, F., and Kobayashi, T. 2013. Sunxiuqinia faeciviva sp. nov., a facultatively anaerobic organoheterotroph of the Bacteroidetes isolated from deep subseafloor sediment. Int. J. Syst. Evol. Microbiol.63, 1602–1609.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol.28, 2731–2739.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmouqin, F., and Higgins, D.G. 1997. The clustal_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res.25, 4876–4882.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tindall, B.J. 1990a. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst. Appl. Microbiol.13, 128–130.

    Article  CAS  Google Scholar 

  • Tindall, B.J. 1990b. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol. Lett.66, 199–202.

    Article  CAS  Google Scholar 

  • Toffin, L., Bidault, A., Pignet, P., Tindall, B.J., Slobodkin, A., Kato, C., and Prieur, D. 2004. Shewanella profunda sp. nov., isolated from deep marine sediment of the nankai trough. Int. J. Syst. Evol. Microbiol.54, 1943–1949.

    CAS  Google Scholar 

  • Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt, andet al. 1987. International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol.37, 463–464.

    Article  Google Scholar 

  • Whitman, W.B., Coleman, D.C., and Wiebe, W.J. 1998. Prokaryotes: The unseen majority. Proc. Natl. Acad. Sci. USA95, 6578–6583.

    Article  CAS  PubMed  Google Scholar 

  • Zillig, W., Holz, I., Janekovic, D., Klenk, H.P., Imsel, E., Trent, J., Wunderl, S., Forjaz, V.H., Coutinho, R., and Ferreira, T. 1990. Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J. Bacteriol.172, 3959–3965.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoung-Chan Kim.

Additional information

These authors contributed equally to this work.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, DH., Lee, JB., Lee, GH. et al. Sunxiuqinia dokdonensis sp. nov., isolated from deep sub-seafloor sediment. J Microbiol. 51, 741–746 (2013). https://doi.org/10.1007/s12275-013-3492-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-013-3492-z

Keywords

Navigation