Skip to main content
Log in

The intracellular mechanism of action on Escherichia coli of BF2-A/C, two analogues of the antimicrobial peptide Buforin 2

  • Microbial Pathogenesis and Host-Microbe Interaction
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

In the present study, the antimicrobial peptides BF2-A and BF2-C, two analogues of Buforin 2, were chemically synthesized and the activities were assayed. To elucidate the bactericidal mechanism of BF2-A/C and their different antimicrobial activities, the influence of peptides to E. coli cell membrane and targets of intracellular action were researched. Obviously, BF2-A and BF2-C did not induce the influx of PI into the E. coli cells, indicating nonmemebrane permeabilizing killing action. The FITC-labeled BF2-A/C could penetrate the E. coli cell membrane and BF2-C penetrated the cells more efficiently. Furthermore, BF2-A/C could bind to DNA and RNA respectively, and the affinity of BF2-C to DNA was powerful at least over 4 times than that of BF2-A. The present results implied that BF2-A and BF2-C inhibited the cellular functions by binding to DNA and RNA of cells after penetrating the cell membranes, resulting in the rapid cell death. The structure-activity relationship analysis of BF2-A/C revealed that the cell-penetrating efficiency and the affinity ability to DNA were critical factors for determining the antimicrobial potency of both peptides. The more efficient cell-penetrating and stronger affinity to DNA caused that BF2-C displayed more excellent antimicrobial activity and rapid killing kinetics than BF2-A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boman, H.G., Agerberth, B., and Boman, A. 1993. Mechanism of action on Escherichia coli of Cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect. Immun. 61, 2978–2984.

    PubMed  CAS  Google Scholar 

  • Boman, H.G., Nilsson, I., and Rasmuson, B. 1972. Inducible antibacterial defense system in Drosophial. Nature 237, 232–235.

    Article  PubMed  CAS  Google Scholar 

  • Dagan, A., Efron, L., and Gaidukov, L. 2002. In vitro antiplasmodium effects of dermaseptin S4 derivatives. Antimicrob. Agents Chemother. 46, 1059–1066.

    Article  PubMed  CAS  Google Scholar 

  • Fields, G.B. and Noble, R.L. 1990. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int. J. Pept. Protein Res. 35, 161–214.

    Article  PubMed  CAS  Google Scholar 

  • Hao, G., Shi, Y.H., Han, J.H., Li, Q.H., Tang, Y.L., and Le, G.W. 2008. Design and analysis of structure-activity relationship of novel antimicrobial peptides derived from the conserved sequence of cecropin. J. Pept. Sci. 14, 290–298.

    Article  PubMed  CAS  Google Scholar 

  • Hao, G., Shi, Y.H., Tang, Y.L., and Le, G.W. 2009. The membrane action mechanism of analogs of the antimicrobial peptide Buforin 2. Peptides 30, 1421–1427.

    Article  PubMed  CAS  Google Scholar 

  • Hultmark, D., Steriner, H., and Rasmuson, T. 1980. Insect immunity, purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalohora cecropia. Eur. J. Biochem. 106, 7–16.

    Article  PubMed  CAS  Google Scholar 

  • Jang, W.S., Kim, H.K., Lee, K.Y., Kim, S.A., Han, Y.S., and Lee, I.H. 2006. Antifungal activity of synthetic peptide derived from halocidin, antimicrobial peptide from the tunicate, Halocynthia aurantium. FEBS Lett. 580, 1490–1496.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, S., Chikushi, A., Tougu, S., Imura, Y., and Nishida, M. 2004. Membrane translocation mechanism of the antimicrobial peptide Buforin 2. Biochemistry 43, 15610–15616.

    Article  PubMed  CAS  Google Scholar 

  • Kragol, G., Lovas, S., Varadi, G., Condie, B.A., Hoffmann, R., and Otvos, J.L. 2001. The antibacterial peptide pyrrhocoricin inhibits the ATPase action of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40, 3016–3026.

    Article  PubMed  CAS  Google Scholar 

  • Lee, D.G., Park, Y., Kim, H.N., Kim, H.K., Kim, P., and Choi, B. 2002. Antifungal mechanism of an antimicrobial peptide, HP (2–20), derived from N-terminus of Helicobacter pylori ribosomal protein L1 against Candida albicans. Biochem. Biophys. Res. Commun. 291, 1006–1013.

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki, K. 1998. Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim. Biophys. Acta 1376, 391–400.

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki, K. 1999. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim. Biophys. Acta 1462, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Park, C.B., Kim, M.S., and Kim, S.C. 1996. A novel antimicrobial peptides from bufo bufo gargarizans. Biochem. Biophys. Res. Commun. 218, 408–413.

    Article  PubMed  CAS  Google Scholar 

  • Park, C.B., Kim, H.S., and Kim, S.C. 1998. Mechanism of action of the antimicrobial peptide Buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem. Biophys. Res. Commun. 244, 253–257.

    Article  PubMed  CAS  Google Scholar 

  • Park, C.B., Yi, K.S., Matsuzaki, K., Kim, M.S., and Kim, S.C. 2000. Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: The proline hinge is responsible for the cell-penetrating ability of buforin II. Proc. Natl. Acad. Sci. USA 97, 8245–8250.

    Article  PubMed  CAS  Google Scholar 

  • Qu, X.M., Steiner, H., Engstrom, A., Bennich, H., and Boman, H.G. 1982. Insect immunity: Isolation and structure of Cecropins B and D from pupae of the Chinese oak silk moth, Antheraea pernyi. Eur. J. Biochem. 127, 219–224.

    Article  PubMed  CAS  Google Scholar 

  • Shai, Y. 1999. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by a-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta 1462, 55–70.

    Article  PubMed  CAS  Google Scholar 

  • Subbalakshmi, C. and Sitaram, N. 1998. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol. Lett. 160, 91–96.

    Article  PubMed  CAS  Google Scholar 

  • Sung, W.S., Park, S.H., and Lee, D.G. 2008. Antimicrobial effect and membrane-active mechanism of Urechistachykinins, neuropeptides derived from Urechis unicinctus. FEBS Lett. 582, 2463–2466.

    Article  PubMed  CAS  Google Scholar 

  • Tang, Y.L., Shi, Y.H., Zhao, W., Hao, G., and Le, G.W. 2009. Interaction of MDpep9, a novel antimicrobial peptide from Chinese traditional edible larvae of housefly, with Escherichia coli genomic DNA. Food Chem. 115, 867–872.

    Article  CAS  Google Scholar 

  • Ulvatne, H., Samuelsen, O., Haukland, H.H., Kramer, M., and Vorland, L.H. 2004. Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis. FEMS Microbiol. Lett. 237, 377–384.

    PubMed  CAS  Google Scholar 

  • Uyterhoeven, E.T., Butler, C.H., Ko, D., and Elmore, D.E. 2008. Investigating the nucleic acid interactions and antimicrobial mechanism of buforin II. FEBS Lett. 582, 1715–1718.

    Article  PubMed  CAS  Google Scholar 

  • Volcke, C., Pirotton, S., Grandfils, C.H., Humbert, C., Thiry, P.A., and Ydens, I. 2006. Influence of DNA condensation state on transfection efficiency in DNA/polymer complexes: An AFM and DLS comparative study. J. Biotechnol. 125, 11–21.

    Article  PubMed  CAS  Google Scholar 

  • Yonezawa, A., Kuwahara, J., Fujii, N., and Sugiura, Y. 1992. Binding of Tachyplesin 1 to DNA revealed by footprinting analysis: significant contribution of secondary structure to DNA binding and implication for biological action. Biochemistry 31, 2998–3004.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L.J., Benz, R., and Hancock, R.E.W. 1999. Influence of proline residues on the antibacterial and synergistic activities of α-helical peptides. Biochemistry 38, 8102–8111.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, W.L., Lan, H.L., Park, I.S., Kim, J.I., Jin, H.Z., and Hahm, K.S. 2006. Design and mechanism of action of a novel bacteria-selective antimicrobial peptide from the cell-penetrating peptide Pep-1. Biochem. Biophys. Res. Commun. 349, 769–774.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Wei Le.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, G., Shi, YH., Tang, YL. et al. The intracellular mechanism of action on Escherichia coli of BF2-A/C, two analogues of the antimicrobial peptide Buforin 2. J Microbiol. 51, 200–206 (2013). https://doi.org/10.1007/s12275-013-2441-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-013-2441-1

Keywords

Navigation