Skip to main content
Log in

The PseEF efflux system is a virulence factor of Pseudomonas syringae pv. syringae

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

An ATP-binding cassette (ABC) transporter, called the PseEF efflux system, was identified at the left border of the syr-syp genomic island of Pseudomonas syringae pv. syringae strain B301D. The PseEF efflux system was located within a 3.3-kb operon that encodes a periplasmic membrane fusion protein (PseE), and an ABC-type cytoplasmic membrane protein (PseF). The PseEF efflux system exhibited amino acid homology to a putative ABC efflux system (MacAB) of E. coli W3104 with identities of 47.2% (i.e., PseE to MacA) and 57.6% (i.e., PseF to MacB). A nonpolar mutation within the pseF gene was generated by nptII insertional mutagenesis. The resultant mutant strain showed significant reduction in secretion of syringomycin (74%) and syringopeptin (71%), as compared to parental strain B301D. Quantitative real-time RT-PCR was used to determine transcript levels of the syringomycin (syrB1) and syringopeptin (sypA) synthetase genes in strain B301D-HK7 (a pseF mutant). Expression of the sypA gene by mutant strain B301D-HK7 was approximately 6.9% as compared to that of parental strain B301D, while the syrB1 gene expression by mutant strain B301D-HK7 was nearly 14.6%. In addition, mutant strain B301D-HK7 was less virulent by approximately 67% than parental strain B301D in immature cherry fruits. Mutant strain B301D-HK7 was not reduced in resistance to any antibiotics used in this study as compared to parental strain B301D. Expression (transcript levels) of the pseF gene was induced approximately six times by strain B301D grown on syringomycin minimum medium (SRM) supplemented with the plant signal molecules arbutin and D-fructose (SRMAF), as compared to that of strain B301D grown on SRM (in the absence of plant signal molecules). In addition, during infection of bean plants by P. syringae pv. syringae strain B728a, expression of the pseF gene increased at 3 days after inoculation (dai). More than 180-fold induction was observed in transcript levels of the pseF gene by parental strain B728a as compared to strain B728a-SL7 (a salA mutant). Thus, the PseEF efflux system, an ABC-type efflux system, has an important role in secretion of syringomycin and syringopeptin, and is required for full virulence in P. syringae pv. syringae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexeyev, M.F. 1995. Three kanamycin resistance gene cassettes with different polylinkers. Biotechniques 18, 52, 54, 56.

    PubMed  CAS  Google Scholar 

  • Allen, S.S. and McMurray, D.N. 2003. Coordinate cytokine gene expression in vivo following induction of tuberculous pleurisy in guinea pigs. Infect. Immun. 71, 4271–4277.

    Article  PubMed  CAS  Google Scholar 

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    PubMed  CAS  Google Scholar 

  • Bateman, A., Birney, E., Durbin, R., Eddy, S.R., Howe, K.L., and Sonnhammer, E.L. 2000. The Pfam protein families database. Nucleic Acids Res. 28, 263–266.

    Article  PubMed  CAS  Google Scholar 

  • Bender, C.L., Alarcon-Chaidez, F., and Gross, D.C. 1999. Pseudomonas syringae phytotoxins: Mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol. Mol. Biol. Rev. 63, 266–292.

    PubMed  CAS  Google Scholar 

  • Bradbury, J.F. 1986. Guide to Plant Pathogenic Bacteria. CAB Int. Mycol. Inst, England.

    Google Scholar 

  • Brodhagen, M., Henkels, M.D., and Loper, J.E. 2004. Positive autoregulation and signaling properties of pyoluteorin, an antibiotic produced by the biological control organism Pseudomonas fluorescens Pf-5. Appl. Environ. Microbiol. 70, 1758–1766.

    Article  PubMed  CAS  Google Scholar 

  • Buell, C.R., Joardar, V., Lindeberg, M., Selengut, J., Paulsen, I.T., Gwinn, M.L., Dodson, R.J., Deboy, R.T., Durkin, A.S., Kolonay, J.F., and et al. 2003. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci.USA 100, 10181–10186.

    Article  PubMed  CAS  Google Scholar 

  • Chang, G. and Roth, C.B. 2001. Structure of MsbA from E. coli: a homolog of the multidrug resistance ATP binding cassette (ABC) transporters. Science 293, 1793–1800.

    Article  PubMed  CAS  Google Scholar 

  • Cody, Y.S., Gross, D.C., Proebsting, E.L.J., and Spotts, R.A. 1987. Suppression of ice nucleation-active Pseudomonas syringae by antagonistic bacteria in fruit tree orchards and evaluations of frost control. Phytopathology 77, 1036–1044.

    Article  Google Scholar 

  • Corpet, F. 1988. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881–10890.

    Article  PubMed  CAS  Google Scholar 

  • Devereux, J., Haeberli, P., and Smithies, O. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12, 387–395.

    Article  PubMed  CAS  Google Scholar 

  • Eberhard, A., Burlingame, A.L., Eberhard, C., Kenyon, G.L., Nealson, K.H., and Oppenheimer, N.J. 1981. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20, 2444–2449.

    Article  PubMed  CAS  Google Scholar 

  • Edberg, S.C. and Chu, A. 1975. Determining antibiotic levels in the blood. Am. J. Med. Technol. 41, 99–105.

    PubMed  CAS  Google Scholar 

  • Espinasse, S., Gohar, M., Lereclus, D., and Sanchis, V. 2002. An ABC transporter from Bacillus thuringiensis is essential for beta-exotoxin I production. J. Bacteriol. 184, 5848–5854.

    Article  PubMed  CAS  Google Scholar 

  • Gibellini, D., Vitone, F., Gori, E., Placa, M.L., and Re, M.C. 2004. Quantitative detection of human immunodeficiency virus type 1 (HIV-1) viral load by SYBR green real-time RT-PCR technique in HIV-1 seropositive patients. J. Virol. Methods 115, 183–189.

    Article  PubMed  CAS  Google Scholar 

  • Gilson, L., Mahanty, H.K., and Kolter, R. 1990. Genetic analysis of an MDR-like export system: the secretion of colicin V. EMBO J. 9, 3875–3894.

    PubMed  CAS  Google Scholar 

  • Gross, D.C. and DeVay, J.E. 1977. Population dynamics and pathogenesis of Pseudomonas syringae in maize and cowpea in relation to the in vitro production of syringomycin. Phytopathology 67, 475–483.

    Article  Google Scholar 

  • Gross, D.C., Grgurina, I., Scholz-Schroeder, B.K., and Lu, S.-E. 2003. Characteristics of the syr-syp Genomic Island of Pseudomonas syringae pv. syringae Strain B301D, pp. 137–145. In Iacobellis, N.S. et al. (eds.), Kluwer Academic Publishers, Netherlands.

    Google Scholar 

  • Hara, O. and Beppu, T. 1982. Mutants blocked in streptomycin production in Streptomyces griseus — the role of A-factor. J. Antibiot. (Tokyo) 35, 349–358.

    CAS  Google Scholar 

  • Hugouvieux-Cotte-Pattat, N., Blot, N., and Reverchon, S. 2001. Identification of TogMNAB, an ABC transporter which mediates the uptake of pectic oligomers in Erwinia chrysanthemi 3937. Mol. Microbiol. 41, 1113–1123.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, T.A., Peng, W.T., Loubens, I., and Storey, D.G. 2002. The Pseudomonas aeruginosa alternative sigma factor PvdS controls exotoxin A expression and is expressed in lung infections associated with cystic fibrosis. Microbiology 148, 3183–3193.

    PubMed  CAS  Google Scholar 

  • Hutchison, M.L. and Gross, D.C. 1997. Lipopeptide phytotoxins produced by Pseudomonas syringae pv. syringae: Comparison of the biosurfactant and ion channel-forming activities of syringopeptin and syringomycin. Mol. Plant-Microbe Interact. 10, 347–354.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, J.M. and Church, G.M. 1999. Alignment and structure prediction of divergent protein families: Periplasmic and outer membrane proteins of bacterial efflux pumps. J. Mol. Biol. 287, 695–715.

    Article  PubMed  CAS  Google Scholar 

  • Kang, H. and Gross, D.C. 2005. Characterization of a resistance- nodulation-cell division transporter system associated with the syr-syp genomic island of Pseudomonas syringae pv. syringae. Appl. Environ. Microbiol. 71, 5056–5065

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.J. and Sundin, G.W. 2000. Regulation of the rulAB mutagenic DNA repair operon of Pseudomonas syringae by UV-B (290 to 320 nanometers) radiation and analysis of rulAB-mediated mutability in vitro and in planta. J. Bacteriol. 182, 6137–6144.

    Article  PubMed  CAS  Google Scholar 

  • Kitten, T., Kinscherf, T.G., McEvoy, J.L., and Willis, D.K. 1998. A newly identified regulator is required for virulence and toxin production in Pseudomonas syringae. Mol. Microbiol. 28, 917–929.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, N., Nishino, K., and Yamaguchi, A. 2001. Novel macrolide- specific ABC-type efflux transporter in Escherichia coli. J. Bacteriol. 183, 5639–5644.

    Article  PubMed  CAS  Google Scholar 

  • Kyte, J. and Doolittle, R.F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.W. and Cooksey, D.A. 2000. Genes expressed in Pseudomonas putida during colonization of a plant-pathogenic fungus. Appl. Environ. Microbiol. 66, 2764–2772.

    Article  PubMed  CAS  Google Scholar 

  • Livak, K.J. and Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408.

    Article  PubMed  CAS  Google Scholar 

  • Llama-Palacios, A., Lopez-Solanilla, E., and Rodriguez-Palenzuela, P. 2002. The ybiT gene of Erwinia chrysanthemi codes for a putative ABC transporter and is involved in competitiveness against endophytic bacteria during infection. Appl. Environ. Microbiol. 68, 1624–1630.

    Article  PubMed  CAS  Google Scholar 

  • Lorian, V. 1996. Antibiotics in Laboratory Medicine. National Committee of Laboratory Safety and Standards (NCLSS), Amsterdam.

    Google Scholar 

  • Lu, S.E., Scholz-Schroeder, B.K., and Gross, D.C. 2002a. Characterization of the salA, syrF, and syrG regulatory genes located at the right border of the syringomycin gene cluster of Pseudomonas syringae pv. syringae. Mol. Plant-Microbe Interact. 15, 43–53.

    Article  PubMed  CAS  Google Scholar 

  • Lu, S.E., Scholz-Schroeder, B.K., and Gross, D.C. 2002b. Construction of pMEKm12, an expression vector for protein production in Pseudomonas syringae. FEMS Microbiol. Lett. 210, 115–121.

    Article  PubMed  CAS  Google Scholar 

  • Matthysse, A.G., Yarnall, H.A., and Young, N. 1996. Requirement for genes with homology to ABC transport systems for attachment and virulence of Agrobacterium tumefaciens. J. Bacteriol. 178, 5302–5308.

    PubMed  CAS  Google Scholar 

  • Mo, Y.Y. and Gross, D.C. 1991a. Expression in vitro and during plant pathogenesis of the syrB gene required for syringomycin production by Pseudomonas syringae pv. syringae. Mol. Plant-Microbe Interact. 4, 28–36.

    Article  CAS  Google Scholar 

  • Mo, Y.Y. and Gross, D.C. 1991b. Plant signal molecules activate the syrB gene, which is required for syringomycin production by Pseudomonas syringae pv. syringae. J. Bacteriol. 173, 5784–5792.

    CAS  Google Scholar 

  • Nelson, K.E., Weinel, C., Paulsen, I.T., Dodson, R.J., Hilbert, H., Martins dos Santos, V.A., Fouts, D.E., Gill, S.R., Pop, M., Holmes, M., and et al. 2002. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4, 799–808.

    Article  PubMed  CAS  Google Scholar 

  • Nowak-Thompson, B., Gould, S.J., and Loper, J.E. 1997. Identification and sequence analysis of the genes encoding a polyketide synthase required for pyoluteorin biosynthesis in Pseudomonas fluorescens Pf-5. Gene 204, 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Olsen, R.H., DeBusscher, G., and McCombie, W.R. 1982. Development of broad-host-range vectors and gene banks: self-cloning of the Pseudomonas aeruginosa PAO chromosome. J. Bacteriol. 150, 60–69.

    PubMed  CAS  Google Scholar 

  • Ott, R.L. and Longnecker, M. 1999. An introduction to statistical methods and data analysis. Brooks/Cole.

  • Putman, M., van Veen, H.W., and Konings, W.N. 2000. Molecular properties of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev. 64, 672–693.

    Article  PubMed  CAS  Google Scholar 

  • Quigley, N.B. and Gross, D.C. 1994. Syringomycin production among strains of Pseudomonas syringae pv. syringae: conservation of the syrB and syrD genes and activation of phytotoxin production by plant signal molecules. Mol. Plant-Microbe Interact. 7, 78–90.

    Article  PubMed  CAS  Google Scholar 

  • Quigley, N.B., Mo, Y.Y., and Gross, D.C. 1993. SyrD is required for syringomycin production by Pseudomonas syringae pathovar syringae and is related to a family of ATP-binding secretion proteins. Mol. Microbiol. 9, 787–801.

    Article  PubMed  CAS  Google Scholar 

  • Ravel, J. and Cornelis, P. 2003. Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol. 11, 195–200.

    Article  PubMed  CAS  Google Scholar 

  • Ren, Q., Kang, K.H., and Paulsen, I.T. 2004. TransportDB: a relational database of cellular membrane transport systems. Nucleic Acids Res. 32, Database issue, D284–D288.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J.F.E.F.a.M.T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., USA.

    Google Scholar 

  • Schmitt, L. and Tampe, R. 2002. Structure and mechanism of ABC transporters. Curr. Opin. Struct. Biol. 12, 754–760.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, E. and Hunke, S. 1998. ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol. Rev. 22, 1–20.

    Article  PubMed  CAS  Google Scholar 

  • Scholz-Schroeder, B.K., Hutchison, M.L., Grgurina, I., and Gross, D.C. 2001a. The contribution of syringopeptin and syringomycin to virulence of Pseudomonas syringae pv. syringae strain B301D on the basis of sypA and syrB1 biosynthesis mutant analysis. Mol. Plant-Microbe Interact. 14, 336–348.

  • Scholz-Schroeder, B.K., Soule, J.D., Lu, S.E., Grgurina, I., and Gross, D.C. 2001b. A physical map of the syringomycin and syringopeptin gene clusters localized to an approximately 145-kb DNA region of Pseudomonas syringae pv. syringae strain B301D. Mol. Plant-Microbe Interact. 14, 1426–1435.

    Article  PubMed  CAS  Google Scholar 

  • Scholz-Schroeder, B.K., Soule, J.D., and Gross, D.C. 2003. The sypA, sypB, and sypC synthetase genes encode twenty-two modules involved in the nonribosomal peptide synthesis of syringopeptin by Pseudomonas syringae pv. syringae B301D. Mol. Plant-Microbe Interact. 16, 271–280.

  • Schoonbeek, H., Del Sorbo, G., and De Waard, M.A. 2001. The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil. Mol. Plant-Microbe Interact. 14, 562–571.

    Article  PubMed  CAS  Google Scholar 

  • Sobel, M.L., McKay, G.A., and Poole, K. 2003. Contribution of the MexXY multidrug transporter to aminoglycoside resistance in Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother. 47, 3202–3207.

    Article  PubMed  CAS  Google Scholar 

  • Stergiopoulos, I., Zwiers, L.H., and De Waard, M.A. 2003. The ABC transporter MgAtr4 is a virulence factor of Mycosphaerella graminicola that affects colonization of substomatal cavities in wheat leaves. Mol. Plant-Microbe Interact. 16, 689–698.

    Article  PubMed  CAS  Google Scholar 

  • Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., Brinkman, F.S., Hufnagle, W.O., Kowalik, D.J., Lagrou, M., and et al. 2000. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406, 959–964.

    Article  PubMed  CAS  Google Scholar 

  • Urban, M., Bhargava, T., and Hamer, J.E. 1999. An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. EMBO J. 18, 512–521.

    Article  PubMed  CAS  Google Scholar 

  • Venter, H., Shilling, R.A., Velamakanni, S., Balakrishnan, L., and van Veen, H.W. 2003. An ABC transporter with a secondary-active multidrug translocator domain. Nature 426, 866–870.

    Article  PubMed  CAS  Google Scholar 

  • Vidaver, A.K. 1967. Synthetic and complex media for the rapid detection of fluorescence of phytopathogenic pseudomonads: Effect of the carbon source. Appl. Microbiol. 15, 1523–5688.

    PubMed  CAS  Google Scholar 

  • Wandersman, C. and Delepelaire, P. 1990. TolC, an Escherichia coli outer membrane protein required for hemolysin secretion. Proc. Natl. Acad. Sci.USA 87, 4776–4780.

    Article  PubMed  CAS  Google Scholar 

  • Wang, N., Lu, S., Records, A.R., and Gross, D.C. 2006. Chracterization of the transcriptional activators SalA and SyrF, while are required for syringomycin and syringopeptin production by Pseudomonas syringae pv. syringae. J. Bacteriol. 188, 3290–3298.

    Article  PubMed  CAS  Google Scholar 

  • Wassenaar, T.M. and Gaastra, W. 2001. Bacterial virulence: can we draw the line? FEMS Microbiol. Lett. 201, 1–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyojeung Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, H., Kang, H. The PseEF efflux system is a virulence factor of Pseudomonas syringae pv. syringae . J Microbiol. 50, 79–90 (2012). https://doi.org/10.1007/s12275-012-1353-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-012-1353-9

Keywords

Navigation