Skip to main content
Log in

Application of multilocus sequence analysis (MLSA) for accurate identification of Legionella spp. Isolated from municipal fountains in Chengdu, China, based on 16S rRNA, mip, and rpoB genes

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstrac

Legionellosis (Legionnaires’ disease; LD) is a form of severe pneumonia caused by species of Legionella bacteria. Because inhalation of Legionella-contaminated aerosol is considered the major infection route, routine assessments of potential infection sources such as hot water systems, air-conditioner cooling water, and municipal fountains are of great importance. In this study, we utilized in vitro culture and multilocus sequence analysis (MLSA) targeting 16S rRNA, mip, rpoB, and mip-rpoB concatenation to isolate and identify Legionella spp. from 5 municipal fountains in Chengdu City, Sichuan Province, China. Our results demonstrated that 16S rRNA was useful for initial identification, as it could recognize isolates robustly at the genus level, while the genes mip, rpoB, and mip-rpoB concatenation could confidently discriminate Legionella species. Notably, the three subspecies of L. pneumophila could be distinguished by the analysis based on rpoB. The serotyping result of strain CD-1 was consistent with genetic analysis based on the concatenation of mip and rpoB. Despite regular maintenance and sanitizing methods, 4 of the 5 municipal fountains investigated in this study were positive for Legionella contamination. Thus, regularly scheduled monitoring of municipal fountains is urgently needed as well as vigilant disinfection. Although the application of MLSA for inspection of potential sites of infection in public areas is not standard procedure, further investigations may prove its usefulness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, H. 1974. A new look at the statistical model identification. IEEE. Trans. Automatic. Control. 19, 716–723.

    Article  Google Scholar 

  • Anand, C.M., Skinner, A.R., Malic, A., and Kurtz, J.B. 1983. Interaction of L. pneumophila and a free living amoeba (Acanthamoeba palestinensis). J. Hyg. Camb. 91, 167–178.

    Article  PubMed  CAS  Google Scholar 

  • Bangsborg, J.M., Shand, G., Pearlman, E., and Hoiby, N. 1991. Cross-reactive Legionella antigens and the antibody response during infection. APMIS 99, 854–865.

    Article  PubMed  CAS  Google Scholar 

  • Barabee, J.M., Gowman, G.W., Martin, W.T., Fields, B.S., and Morrill, W.E. 1987. Protocol for sampling environmental sites for legionellae. Appl. Environ. Microbiol. 53, 1454–1458.

    Google Scholar 

  • Bartie, C., Vente, S.N., and Nel, L.H. 2003. Identification methods for Legionella from environmental samples. Water Res. 37, 1362–1370.

    Article  PubMed  CAS  Google Scholar 

  • Blanco, S., Prat, C., Sanchez, M.D., Ferrer, D., Pellicer, T., Haba, L., Latorre, I., Vilaplana, C., Ausina, V., and Dominguez, J. 2008. Evaluation of a Legionella urinary antigen enzyme immunoassay for rapid detection of Legionella pneumophila in water samples. Int. J. Hyg. Envir. Health 211, 168–171.

    Article  CAS  Google Scholar 

  • Boswell, T.C. 1996. Serological cross reaction between Legionella and campylobacterin the rapid microagglutination test. J. Clin. Pathol. 49, 584–586.

    Article  PubMed  CAS  Google Scholar 

  • Brenner, D.J. 1986. Classification of Legionellaceae: current status and remaining questions. Isr. J. Med. Sci. 22, 620–632.

    PubMed  CAS  Google Scholar 

  • Brenner, D.J., Steigerwalt, A.G., Epple, P., Bibb, F.W., Mckinney, R.M., Starnes, R.W., Colville, J.M., Selander, R.M., and Edelstein, P.H. 1988. Legionella pneumophila serogroup Lansing 3 isolated from a patient with fatal pneumonia, and description of L. pneumophila subsp. pneumophila subsp. nov., L. pneumophila subsp. fraseri subsp. nov., and L. pneumophila subsp. pascullei subsp. nov. J. Clin. Microbiol. 26, 1695–1703.

    PubMed  CAS  Google Scholar 

  • Cianciotto, N.P., Eisenstein, B.I., Mody, C.H., Toews, G.B., and Engleberg, N.C. 1989. A Legionella pneumophila gene encoding a species-specific surface protein potentiates initiation of intracellular infection. Infect. Immun. 57, 1255–1262.

    PubMed  CAS  Google Scholar 

  • Clayton, R.A., Sutton, G., Hinkle, P.S., Bult, C., and Fields, C. 1995. Intra specific variation in small-subunit rRNA sequences in GenBank, why single sequences may not adequately represent prokaryotic taxa. Int. J. Syst. Bacteriol. 45, 595–599.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, I.R., White, J., Mahenthiralingam, E., and Hanlon, G.W. 2008. Long-term persistence of a single Legionella pneumophila strain possessing the mip gene in a municipal shower despite repeated cycles of chlorination. J. Hosp. Infect. 70, 154–159.

    Article  PubMed  CAS  Google Scholar 

  • Coscolla, M., Fenolla, J., Escribano, I., and Gonzalez-Candelas, F. 2010. Legionellosis outbreak associated with asphalt paving machine, Spain, 2009. Emerg. Infect. Dis. 16, 1381–1387.

    Article  PubMed  Google Scholar 

  • Dahllof, I., Baillie, H., and Kjelleberg, S. 2000. RpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl. Environ. Microbiol. 66, 3376–3380.

    Article  PubMed  CAS  Google Scholar 

  • Declerk, P., Behets, J., Lammertyn, E., Labeau, I., Anne, J., and Ollevier, F. 2005. Detection and quantification of Legionella pneumophila in water samples using competitive PCR. Can. J. Microbiol. 52, 584–590.

    Article  Google Scholar 

  • Doyle, R.M., Steele, T.W., McLennan, A.M., Parkinson, I.H., Manning, P.A., and Heuzenroeder, M.W. 1998. Sequence analysis of the mip gene of the soilborne pathogen Legionella longbeachae. Infect. Immun. 66, 1492–1499.

    PubMed  CAS  Google Scholar 

  • Edelstein, P.H. 2007. Legionella. In Murray, P.R., Baron, E.J., Jorgensen, J.H., Landry, M.L., and Pfalle, M.A. (eds.), Manual of clinical microbiology, pp. 835–849. 9th ed. ASM Press, Washington, D.C., USA.

    Google Scholar 

  • Euser, S.M., Pelgrim, M., and Den Boer, J.W. 2010. Legionnaires’ disease and Pontiac fever after using a private outdoor whirl pool spa. Scand. J. Infect. Dis. Epub. 42, 910–916.

    Article  Google Scholar 

  • Fields, B.S., Benson, R.F., and Besser, R.E. 2002. Legionella and Legionnaires’ disease, 25 years of investigation. Clin. Microbiol. Rev. 15, 506–526.

    Article  PubMed  Google Scholar 

  • Fields, B.S., Shotts, E.B., Feeley, J.C., Gorman, G.W., and Martin, W.T. 1984. Proliferation of Legionella pneumophila as an intracellular parasite of the ciliated protozoan Tetrahymena pyriformis. Appl. Environ. Microbiol. 47, 467–471.

    PubMed  CAS  Google Scholar 

  • Fry, N.K., Warwick, S., Saunders, N.A., and Embley, T.M. 1991. The use of 16S ribosomal RNA analyses to investigate the phylogeny of the family Legionellaceae. J. Gen. Microbiol. 137, 215–222.

    Google Scholar 

  • Gomez-Valero, L., Rusniok, C., and Buchrieser, C. 2009. Legionella pneumophila, population genetics, phylogeny and genomics. Infect. Genet. Evol. 9, 727–739.

    Article  PubMed  CAS  Google Scholar 

  • Hacker, J. and Fischer, G. 1993. Immunophilins, structure-function relationship and possible role in microbial pathogenicity. Mol. Microbiol. 10, 445–456.

    Article  PubMed  CAS  Google Scholar 

  • Helbig, J.H., Bernander, S., Castellani Pastoris, M., Etienne, J., Gaia, V., Lauwers, S., Lindsay, D., Lück, P.C., Marques, T., Mentula, S., and et al. 2002. Pan-European study on culture-proven Legionnaires’ disease, distribution of Legionella pneumophila serogroups and monoclonal subgroups. Eur. J. Clin. Microbiol. Infect. Dis. 21, 710–716.

    Article  PubMed  CAS  Google Scholar 

  • Hoge, C.W. and Breiman, R.F. 1991. Advances in the epidemiology and control of Legionella. Epidemiol. Rev. 13, 329–335.

    PubMed  CAS  Google Scholar 

  • Holmes, E.C., Urwin, R., and Maiden, M.C.J. 1999. The influence of recombination on the population structure and evolution of the human pathogen Neisseria meningitidis. Mol. Biol. Evol. 16, 741–749.

    PubMed  CAS  Google Scholar 

  • Huelsenbeck, J.P., Larget, B., Miller, R.E., and Ronquist, F. 2002. Potential applications and pitfalls of Bayesian inference of phylogeny. Syst. Biol. 51, 673–688.

    Article  PubMed  Google Scholar 

  • Joseph, C.A., Ricketts, K.D., Yadav, R., and Patel, S., on behalf of the European Working Group for Legionella Infections. 2010. Travel-associated Legionnaires’ disease in Europe in 2009. Euro. Surveill. 15, 19683.

    PubMed  CAS  Google Scholar 

  • Kim, B.J., Lee, S.H., Lyu, M.A., Kim, S.J., Bai, G.H., Kim, S.S., Chae, G.T., Kim, E.C., Cha, C.Y., and Kook, Y.H. 1999. Identification of mycobacterial species by comparative sequence analysis of the RNA polymerase gene (rpoB). J. Clin. Microbiol. 37, 1714–1720.

    PubMed  CAS  Google Scholar 

  • Ko, K.S., Lee, H.K., Park, M.Y., Lee, K.H., Yun, Y.J., Woo, S.Y., Miyamoto, H., and Kook, Y.H. 2002. Application of RNA polymerase beta-subunit gene (rpoB) sequences for the molecular differentiation of Legionella species. J. Clin. Microbiol. 40, 2653–2658.

    Article  PubMed  CAS  Google Scholar 

  • Kuroki, H., Miyamoto, H., Fukuda, K., Iihara, H., Kawamura, Y., Ogawa, M., Wang, Y., Ezaki, T., and Taniguchi, H. 2007. Legionella impletisoli sp. nov. and Legionella yabuuchiae sp. nov., isolated from soils contaminated with industrial wastes in Japan. Syst. Appl. Microbiol. 30, 273–279.

    Article  PubMed  CAS  Google Scholar 

  • Luck, P.C., Igel, L., Helbig, J.H., Kuhlisch, E., and Jaztzwauk, L. 2004. Comparison of commercially available media for the recovery of Legionella species. Int. J. Hyg. Environ. Health 207, 589–593.

    Article  PubMed  Google Scholar 

  • Mathys, W., Stanke, J., Harmuth, M., and Jungle-Mathys, E. 2008. Occurence of Legionella in hot water system of single-family residences in suburbs of two German cities with special reference to solar and district heating. Int. J. Hyg. Environ. Health 211, 179–185.

    Article  PubMed  Google Scholar 

  • Mollet, C., Drancourt, M., and Raoult, D. 1997. RpoB sequence analysis as a novel basis for bacterial identfication. Mol. Microbiol. 26, 1005–1011.

    Article  PubMed  CAS  Google Scholar 

  • Newton, H.J., Ang, D.K., van Driel, I.R., and Hartland, E.L. 2010. Molecular pathogenesis of infections caused by Legionella pneumophila. Clin. Microbiol. Rev. 23, 274–298.

    Article  PubMed  CAS  Google Scholar 

  • O’Connell, W.A., Dhand, L., and Cianciotto, N.P. 1996. Infection of macrophage-like cells by Legionella species that have not been associated with disease. Infect. Immun. 64, 4381–4384.

    PubMed  Google Scholar 

  • Page, R.D.M. 1996. TREEVIEW, an application to display phylogenetic trees on personal computers. CABIOS 12, 357–358.

    PubMed  CAS  Google Scholar 

  • Palmore, T.N. and Stock, F. 2009. A cluster of nosocomial Legionnaires’ disease linked to a contaminated hospital decorative water fountain. Infect. Control. Hosp. Epidemiol. 30, 764–768.

    Article  PubMed  Google Scholar 

  • Posada, D. and Buckley, T.R. 1998. Modeltest, testing the model of DNA substitution. Bioinfomatics 14, 817–818.

    Article  CAS  Google Scholar 

  • Posada, D. and Buckley, T.R. 2004. Model selection and model averaging in phylogenetics advantages of Akaike information criterion and Bayesian approach. Syst. Biol. 53, 793–808.

    Article  PubMed  Google Scholar 

  • Qu, P., Deng, X., Zhang, J., Chen, J., Zhang, J., Zhang, Q., Xiao, Y., and Chen, S. 2009. Identification and characterization of the Francisella spp. strain 08HL01032 isolated in air condition systems. Acta. Microbiologica. Sinica. 49, 1003–1010.

    PubMed  CAS  Google Scholar 

  • Ratcliff, R.M., Lanser, J.A., Manning, P.A., and Heuzenroeder, M.W. 1998. Sequence-based classification scheme for the genus Legionella targeting the mip gene. J. Clin. Microbiol. 36, 1560–1567.

    PubMed  CAS  Google Scholar 

  • Ronquist, F. and Huelsenbeck, J.P. 2003. Mrbayes 3, Bayesian phylogenic inference under mixed models. Bioinformatics 19, 1572–2574.

    Article  PubMed  CAS  Google Scholar 

  • Rowbotham, T.J. 1986. Current views on the relationships between amoebae, legionellae and man. Isr. J. Med. Sci. 22, 678–689.

    PubMed  CAS  Google Scholar 

  • Rubin, C.J., Thollesson, M., Kirsebom, L.A., and Herrmann, B. 2005. Phylogenetic relationships and species differentiation of 39 Legionella species by sequence determination of the RNase P RNA gene rnpB. J. Syst. Bacteriol. 55, 2039–2049.

    Article  CAS  Google Scholar 

  • Severinov, K., Mustaev, A., Kukarin, A., Muzzin, O., Bass, I., Darst, S.A., and Goldfarb, A. 1996. Structural modules of the large subunits of RNA polymerase. J. Biol. Chem. 271, 27969–27974.

    Article  PubMed  CAS  Google Scholar 

  • Steele, T.W., Lanser, J., and Sangster, N. 1990. Isolation of Legionella longbeachae serogroup1 from potting mixes. Appl. Environ. Microbiol. 56, 49–53.

    PubMed  CAS  Google Scholar 

  • Sussman, M. 2002. Molecular medical microbiology. Academic Press, Inc., London, England.

    Google Scholar 

  • Swofford, D.L. 2002. PAUP*. Phylogenetic analysis using parsimony (* and other methods), version 4. Sinauer, Sunderland, MA, USA.

    Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4, Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Bio. Evol. 24, 1596–1599.

    Article  CAS  Google Scholar 

  • Thompson, J.D., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The Clustal X Windows interface, flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.

    Article  PubMed  CAS  Google Scholar 

  • Tyndall, R.L. and Domingue, E.L. 1982. Cocultivation of Legionella pneumophila and free-living amoebae. Appl. Environ. Microbiol. 44, 954–959.

    PubMed  CAS  Google Scholar 

  • Ueda, K., Seki, T., Kudo, T., Yoshida, T., and Kataoka, M. 1999. Two distinct mechanisms cause heterogeneity of 16S rRNA. J. Bacteriol. 181, 78–82.

    PubMed  CAS  Google Scholar 

  • Wilson, D.A., Reischl, U., Hall, G.S., and Procop, G.W. 2007. Use of partial 16S rRNA gene sequencing for identification of Legionella pneumophila and non-pneumophila Legionella spp. J. Clin. Microbiol. 45, 257–258.

    Article  PubMed  CAS  Google Scholar 

  • Yu, V.L., Plouffe, J.F., Pastoris, M.C., Stout, J.E., Schousboe, M., Widmer, A., Summersgill, J., File, T., Heath, C.M., Paterson, D.L., and et al. 2002. Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community-acquired legionellosis, an international collaborative survey. J. Infect. Dis. 186, 127–128.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-ping Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, W., Xu, Y., Chen, Dl. et al. Application of multilocus sequence analysis (MLSA) for accurate identification of Legionella spp. Isolated from municipal fountains in Chengdu, China, based on 16S rRNA, mip, and rpoB genes. J Microbiol. 50, 127–136 (2012). https://doi.org/10.1007/s12275-012-1243-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-012-1243-1

Keywords

Navigation