Skip to main content
Log in

Biochemical analysis of a fibrinolytic enzyme purified from Bacillus subtilis strain A1

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

A fibrinolytic enzyme from Bacillus subtilis strain Al was purified by chromatographic methods, including DEAE Sephadex A-50 column chromatography and Sephadex G-50 column gel filtration. The purified enzyme consisted of a monomeric subunit and was estimated to be approximately 28 kDa in size by SDS-PAGE. The specific activity of the fibrinolytic enzyme was 1632-fold higher than that of the crude enzyme extract. The fibrinolytic activity of the purified enzyme was approximately 0.62 and 1.33 U/ml in plasminogen-free and plasminogen-rich fibrin plates, respectively. Protease inhibitors PMSF, DIFP, chymostatin, and TPCK reduced the fibrinolytic activity of the enzyme to 13.7, 35.7, 15.7, and 23.3%, respectively. This result suggests that the enzyme purified from B. subtilis strain Al was a chymotrypsin-like serine protease. In addition, the optimum temperature and pH range of the fibrinolytic enzyme were 50°C and 6.0–10.0, respectively. The N-terminal amino acid sequence of the purified enzyme was identified as Q-T-G-G-S-I-I-D-P-I-N-G-Y-N, which was highly distinguished from other known fibrinolytic enzymes. Thus, these results suggest a fibrinolytic enzyme as a novel thrombolytic agent from B. subtilis strain Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ando, S., K. Ishikawa, H. Ishida, Y. Kawarabayasi, H. Kikuchi, and Y. Kosugi. 1999. Thermostable aminopeptidase from Pyrococcus horikoshii. FEBS Lett. 447, 25–28.

    Article  PubMed  CAS  Google Scholar 

  • Arai, K., J. Mimuro, S. Madoiwa, M. Matsuda, T. Sako, and Y. Sakata. 1995. Effect of staphylokinase concentration of plasminogen activation. Biochim. Biophys. Acta 1245, 69–75.

    PubMed  Google Scholar 

  • Astrup, T. and S. Müllertz. 1952. The fibrin plate method for estimating fibrinolytic activity. Arch. Biochem. Biophys. 40, 346–351.

    Article  PubMed  CAS  Google Scholar 

  • Blann, A.D., M.J. Landray, and G.Y. Lip. 2002. ABC of antithrombotic therapy: an overview of antithrombotic therapy. BMJ 25, 762–765.

    Article  Google Scholar 

  • Bode, C., M.S. Runge, and R.W. Smalling. 1996. The future of thrombolysis in the treatment of acute myocardial infarction. Eur. Heart J. 17, 55–60.

    PubMed  Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Dobrovolsky, A.B. and E.V. Titaeva. 2002. The fibrinolysis system: regulation of activity and physiologic functions of its main components. Biochemistry (Moscow) 67, 99–108.

    Article  CAS  Google Scholar 

  • Fujita, M., K. Nomura, K. Hong, Y. Ito, and A. Asada. 1993. Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan. Biochem. Biophys. Res. Commun. 197, 1340–1347.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, R.L., K.T. Lee, J.H. Wang, L.Y. Lee, and R.P. Chen. 2009. Amyloid-degrading ability of nattokinase from Bacillus subtilis natto. J. Agric. Food Chem. 57, 503–508.

    Article  PubMed  CAS  Google Scholar 

  • Jeong, Y.K., J.H. Kim, S.W. Gal, J.E. Kim, S.S. Park, K.T. Chung, Y.H. Kim, B.W. Kim, and W.H. Joo. 2004a. Molecular cloning and characterization of the gene encoding a fibrinolytic enzyme from Bacillus subtilis strain A1. World J. Microbiol. Biotechnol. 20, 711–717.

    Article  CAS  Google Scholar 

  • Jeong, Y.K., W.S. Yang, K.H. Kim, K.T. Chung, W.H. Joo, J.H. Kim, and J.U. Park. 2004b. Purification of a fibrinolytic enzyme (myulchikinase) from pickled anchovy and its cytotoxicity to the tumor cell lines. Biotechnol. Lett. 26, 393–397.

    Article  PubMed  CAS  Google Scholar 

  • Kim, W., K. Choi, Y. Kim, H. Park, J. Choi, Y. Lee, H. Oh, I. Kwon, and S. Lee. 1996. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Appl. Environ. Microbiol. 62, 2482–2488.

    PubMed  CAS  Google Scholar 

  • Kim, H.K., G.T. Kim, D.K. Kim, W.A. Choi, S.H. Park, Y.K. Jeong, and I.S. Kong. 1997. Purification and characterization of a novel fibrinolytic enzyme from Bacillus sp. KA38 originated from fermented fish. J. Ferment. Bioeng. 84, 307–312.

    Article  CAS  Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J., S. Park, W.A. Choi, K.H. Lee, Y.K. Jeong, I.S. Kong, and S. Park. 1999. Production of a fibrinolytic enzyme in bioreactor culture by Bacillus subtilis BK-17. J. Microbiol. Biotechnol. 9, 443–449.

    Google Scholar 

  • Lijnen, H.R., S. van Hoef, F. de Cock, K. Okada, S. Ueshima, O. Matsuo, and D. Collen. 1991. On the mechanism of fibrin-specific plasminogen activation by staphylokinase. J. Biol. Chem. 239, 11826–11832.

    Google Scholar 

  • Medved, L.V., D.A. Solovjov, and K.C. Ingham. 1966. Domain structure, stability and interactions in streptokinase. Eur. J. Biochem. 239, 333–339.

    Article  Google Scholar 

  • Nakamura, T., Y. Yamagata, and E. Ichishima. 1992. Nucleotide sequence of the subtilisin NAT gene, aprN of Bacillus subtilis (natto). Biosci. Biotechnol. Biochem. 56, 1869–1871.

    Article  PubMed  CAS  Google Scholar 

  • Park, I.S., J.U. Park, M.J. Seo, M.J. Kim, H.H. Lee, S.R. Kim, B.W. Kang, Y.H. Choi, W.H. Joo, and Y.K. Jeong. 2010. Purification and biochemical characterization of a 17 kDa fibrinolytic enzyme from Schizophyllum commune. J. Microbiol. 48, 836–841.

    Article  PubMed  CAS  Google Scholar 

  • Smith, E.L., R.J. Delange, W.H. Evans, M. Landon, and F.S. Markland. 1968. Subtilisin Carlsberg. V. The complete sequence; comparison with subtilisin BPN’; evolutionary relationships. J. Biol. Chem. 243, 2184–2191.

    PubMed  CAS  Google Scholar 

  • Sumi, H., H. Hamada, H. Tsushima, H. Mihara, and H. Muraki. 1987. A novel fibrinolytic enzyme (Nattokinase) in the vegetable cheese natto: a typical and popular soybean food in the Japanese diet. Experimentia 43, 1110–1111.

    Article  CAS  Google Scholar 

  • Sumi, H., N. Nakajima, and C. Yatagai. 1995. A unique strong fibrinolytic enzyme (Katsuwokinase) in skipjack “Shiokara”, a Japanese traditional fermented food. Comp. Biochem. Physiol. 112, 543–547.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Kee Jeong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeo, W.S., Seo, M.J., Kim, M.J. et al. Biochemical analysis of a fibrinolytic enzyme purified from Bacillus subtilis strain A1. J Microbiol. 49, 376–380 (2011). https://doi.org/10.1007/s12275-011-1165-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-011-1165-3

Keywords

Navigation