Skip to main content
Log in

Transcriptional regulatory elements in fungal secondary metabolism

  • Review
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Filamentous fungi produce a variety of secondary metabolites of diverse beneficial and detrimental activities to humankind. The genes required for a given secondary metabolite are typically arranged in a gene cluster. There is considerable evidence that secondary metabolite gene regulation is, in part, by transcriptional control through hierarchical levels of transcriptional regulatory elements involved in secondary metabolite cluster regulation. Identification of elements regulating secondary metabolism could potentially provide a means of increasing production of beneficial metabolites, decreasing production of detrimental metabolites, aid in the identification of ‘silent’ natural products and also contribute to a broader understanding of molecular mechanisms by which secondary metabolites are produced. This review summarizes regulation of secondary metabolism associated with transcriptional regulatory elements from a broad view as well as the tremendous advances in discovery of cryptic or novel secondary metabolites by genomic mining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, Y., C. Ono, M. Hosobuchi, and H. Yoshikawa. 2002a. Functional analysis of mlcR, a regulatory gene for ML-236B (compactin) biosynthesis in Penicillium citrinum. Mol. Genet. Genomics 268, 352–361.

    PubMed  CAS  Google Scholar 

  • Abe, Y., T. Suzuki, C. Ono, K. Iwamoto, M. Hosobuchi, and H. Yoshikawa. 2002b. Molecular cloning and characterization of an ML-236B (compactin) biosynthetic gene cluster in Penicillium citrinum. Mol. Genet. Genomics 267, 636–646.

    PubMed  CAS  Google Scholar 

  • Adams, T.H., M.T. Boylan, and W.E. Timberlake. 1988. BrlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell. 54, 353–362.

    PubMed  CAS  Google Scholar 

  • Amaike, S. and N.P. Keller. 2009. Distinct roles for VeA and LaeA in development and pathogenesis of Aspergillus flavus. Eukaryot. Cell. 8, 1051–1060.

    PubMed  CAS  Google Scholar 

  • Bayram, O., S. Krappmann, M. Ni, J.W. Bok, K. Helmstaedt, O. Valerius, S. Braus-Stromeyer, and et al. 2008a. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320, 1504–1506.

    PubMed  CAS  Google Scholar 

  • Bayram, O., S. Krappmann, S. Seiler, N. Vogt, and G.H. Braus. 2008b. Neurospora crassa ve-1 affects asexual conidiation. Fungal Genet. Biol. 45, 127–138.

    PubMed  CAS  Google Scholar 

  • Bergh, K.T., O. Litzka, and A.A. Brakhage. 1996. Identification of a major cis-acting DNA element controlling the bidirectionally transcribed penicillin biosynthesis genes acvA (pcbAB) and ipnA (pcbC) of Aspergillus nidulans. J. Bacteriol. 178, 3908–3916.

    PubMed  CAS  Google Scholar 

  • Bergmann, S., A.N. Funk, K. Scherlach, V. Schroeckh, E. Shelest, U. Horn, C. Hertweck, and A.A. Brakhage. 2010. Activation of a silent fungal polyketide biosynthesis pathway through regulatory cross talk with a cryptic nonribosomal peptide synthetase gene cluster. Appl. Environ. Microbiol. 76, 8143–8149.

    PubMed  CAS  Google Scholar 

  • Bergmann, S., J. Schumann, K. Scherlach, C. Lange, A.A. Brakhage, and C. Hertweck. 2007. Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat. Chem. Biol. 3, 213–217.

    PubMed  CAS  Google Scholar 

  • Böhnert, H.U., I. Fudal, W. Dioh, D. Tharreau, J.L. Notteghem, and M.H. Lebrun. 2004. A putative polyketide synthase peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell. 16, 2499–2513.

    PubMed  Google Scholar 

  • Bok, J.W., S.A. Balajee, K.A. Marr, D. Andes, K.F. Nielsen, J.C. Frisvad, and N.P. Keller. 2005. LaeA, a regulator of morphogenetic fungal virulence factors. Eukaryot. Cell. 4, 1574–1582.

    PubMed  CAS  Google Scholar 

  • Bok, J.W., Y.M. Chiang, E. Szewczyk, Y. Reyes-Dominguez, A.D. Davidson, J.F. Sanchez, H.C. Lo, and et al. 2009. Chromatin-level regulation of biosynthetic gene clusters. Nat. Chem. Biol. 5, 462–464.

    PubMed  CAS  Google Scholar 

  • Bok, J.W., D. Chung, S.A. Balajee, K.A. Marr, D. Andes, K.F. Nielsen, J.C. Frisvad, K.A. Kirby, and N.P. Keller. 2006a. GliZ, a transcriptional regulator of gliotoxin biosynthesis, contributes to Aspergillus fumigatus virulence. Infect. Immun. 74, 6761–6768.

    PubMed  CAS  Google Scholar 

  • Bok, J.W., D. Hoffmeister, L.A. Maggio-Hall, R. Murillo, J.D. Glasner, and N.P. Keller. 2006b. Genomic mining for Aspergillus natural products. Chem. Biol. 13, 31–37.

    PubMed  CAS  Google Scholar 

  • Bok, J.W. and N.P. Keller. 2004. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot. Cell. 3, 527–535.

    PubMed  CAS  Google Scholar 

  • Bok, J.W., D. Noordermeer, S.P. Kale, and N.P. Keller. 2006c. Secondary metabolic gene cluster silencing in Aspergillus nidulans. Mol. Microbiol. 61, 1636–1645.

    PubMed  CAS  Google Scholar 

  • Bouhired, S., M. Weber, A. Kempf-Sontag, N.P. Keller, and D. Hoffmeister. 2007. Accurate prediction of the Aspergillus nidulans terrequinone gene cluster boundaries using the transcriptional regulator LaeA. Fungal Genet. Biol. 44, 1134–1145.

    PubMed  CAS  Google Scholar 

  • Brakhage, A.A., A. Andrianopoulos, M. Kato, S. Steidl, M.A. Davis, N. Tsukagoshi, and M.J. Hynes. 1999. HAP-Like CCAAT-binding complexes in filamentous fungi: implications for biotechnology. Fungal Genet. Biol. 27, 243–252.

    PubMed  CAS  Google Scholar 

  • Brakhage, A.A., P. Browne, and G. Turner. 1992. Regulation of Aspergillus nidulans penicillin biosynthesis and penicillin biosynthesis genes acvA and ipnA by glucose. J. Bacteriol. 174, 3789–3799.

    PubMed  CAS  Google Scholar 

  • Brakhage, A.A. and V. Schroeckh. 2011. Fungal secondary metabolites — Strategies to activate silent gene clusters. Fungal Genet. Biol. 48, 15–22.

    PubMed  CAS  Google Scholar 

  • Brakhage, A.A., P. Sprote, Q. Al-Abdallah, A. Gehrke, H. Plattner, and A. Tuncher. 2004. Regulation of penicillin biosynthesis in filamentous fungi. Adv. Biochem. Eng. Biotechnol. 88, 45–90.

    PubMed  CAS  Google Scholar 

  • Brown, D.W., R.A.E. Butchko, M. Busman, and R.H. Proctor. 2007. The Fusarium verticillioides FUM gene cluster encodes a Zn(II)2-Cys6 protein that affects FUM gene expression and fumonisin production. Eukaryot. Cell. 6, 1210–1218.

    PubMed  CAS  Google Scholar 

  • Brown, D.W., J.H. Yu, H.S. Kelkar, M. Fernandes, T.C. Nesbitt, N.P. Keller, T.H. Adams, and T.J. Leonard. 1996. Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc. Natl. Acad. Sci. USA 93, 1418–1422.

    PubMed  CAS  Google Scholar 

  • Bruns, S., M. Seidler, D. Albrecht, S. Salvenmoser, N. Remme, C. Hertweck, A.A. Brakhage, O. Kniemeyer, and F.M.C. Muller. 2010. Functional genomic profiling of Aspergillus fumigatus biofilm reveals enhanced production of the mycotoxin gliotoxin. Proteomics 10, 3097–3107.

    PubMed  CAS  Google Scholar 

  • Butchko, R.A.E., T.H. Adams, and N.P. Keller. 1999. Aspergillus nidulans mutants defective in stc gene cluster regulation. Genetics 153, 715–720.

    PubMed  CAS  Google Scholar 

  • Calvo, A.M. 2008. The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genet. Biol. 45, 1053–1061.

    PubMed  CAS  Google Scholar 

  • Calvo, A.M., J. Bok, W. Brooks, and N.P. Keller. 2004. VeA is required for toxin and sclerotial production in Aspergillus parasiticus. Appl. Environ. Microbiol. 70, 4733–4739.

    PubMed  CAS  Google Scholar 

  • Carbone, I., J.H. Ramirez-Prado, J.L. Jakobek, and B.W. Horn. 2007. Gene duplication, modularity and adaptation in the evolution of the aflatoxin gene cluster. BMC Evol. Biol. 9, 111.

    Google Scholar 

  • Cary, J.W., K.C. Ehrlich, M. Wright, P.K. Chang, and D. Bhatnagar. 2000. Generation of aflR disruption mutants of Aspergillus parasiticus. Appl. Microbiol. Biot. 53, 680–684.

    CAS  Google Scholar 

  • Chanda, A., L.V. Roze, S. Kang, K.A. Artymovich, G.R. Hicks, N.V. Raikhel, A.M. Calvo, and J.E. Linz. 2009. A key role for vesicles in fungal secondary metabolism. Proc. Natl. Acad. Sci. USA 106, 19533–19538.

    PubMed  CAS  Google Scholar 

  • Chang, P.K. 2003. The Aspergillus parasiticus protein AFLJ interacts with the aflatoxin pathway-specific regulator AFLR. Mol. Genet. Genomics 268, 711–719.

    PubMed  CAS  Google Scholar 

  • Chang, P.K., D. Bhatnagar, T.E. Cleveland, and J.W. Bennett. 1995a. Sequence variability in homologs of the aflatoxin pathway gene aflR distinguishes species in Aspergillus section flavi. Appl. Environ. Microbiol. 61, 40–43.

    PubMed  CAS  Google Scholar 

  • Chang, P.K., K.C. Ehrlich, J.J. Yu, D. Bhatnagar, and T.E. Cleveland. 1995b. Increased expression of Aspergillus parasiticus AflR, encoding a sequence-specific DNA-binding protein, relieves nitrate inhibition of aflatoxin biosynthesis. Appl. Environ. Microbiol. 61, 2372–2377.

    PubMed  CAS  Google Scholar 

  • Chang, P.K., J. Yu, D. Bhatnagar, and T.E. Cleveland. 2000. Characterization of the Aspergillus parasiticus major nitrogen regulatory gene, areA. Biochim. Biophys. Acta. 1491, 263–266.

    PubMed  CAS  Google Scholar 

  • Chen, H.Q., M.H. Lee, M.E. Daub, and K.R. Chung. 2007. Molecular analysis of the cercosporin biosynthetic gene cluster in Cercospora nicotianae. Mol. Microbiol. 64, 755–770.

    PubMed  CAS  Google Scholar 

  • Chen, Y.P., G.F. Yuan, S.Y. Hsieh, Y.S. Lin, W.Y. Wang, L.L. Liaw, and C.P. Tseng. 2010. Identification of the mokH gene encoding transcription factor for the upregulation of monacolin K biosynthesis in Monascus pilosus. J. Agr. Food Chem. 58, 287–293.

    CAS  Google Scholar 

  • Chiang, Y.M., K.H. Lee, J.F. Sanchez, N.P. Keller, and C.C. Wang. 2009a. Unlocking fungal cryptic natural products. Nat. Prod. Commun. 4, 1505–1510.

    PubMed  CAS  Google Scholar 

  • Chiang, Y.M., E. Szewczyk, A.D. Davidson, R. Entwistle, N.P. Keller, C.C. Wang, and B.R. Oakley. 2010. Characterization of the Aspergillus nidulans monodictyphenone gene cluster. Appl. Environ. Microbiol. 76, 2067–2074.

    PubMed  CAS  Google Scholar 

  • Chiang, Y.M., E. Szewczyk, A.D. Davidson, N. Keller, B.R. Oakley, and C.C.C. Wang. 2009b. A gene cluster containing two fungal polyketide synthases encodes the biosynthetic pathway for a polyketide, asperfuranone, in Aspergillus nidulans. J. Am. Chem. Soc. 131, 2965–2970.

    PubMed  CAS  Google Scholar 

  • Chiang, Y.M., E. Szewczyk, T. Nayak, A.D. Davidson, J.F. Sanchez, H.C. Lo, W.Y. Ho, and et al. 2008. Molecular genetic mining of the Aspergillus secondary metabolome: Discovery of the emericellamide biosynthetic pathway. Chem. Biol. 15, 527–532.

    PubMed  CAS  Google Scholar 

  • Choi, Y.E. and S.B. Goodwin. 2011. MVE1 encoding the velvet gene in Mycosphaerella graminicola is associated with aerial mycelium formation, melanin biosynthesis, hyphal swelling, and light signaling. Appl. Environ. Microbiol. 77, 942–953.

    PubMed  CAS  Google Scholar 

  • Cichewicz, R.H. 2010. Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Nat. Prod. Rep. 27, 11–22.

    PubMed  CAS  Google Scholar 

  • Dagenais, T.R., S.S. Giles, V. Aimanianda, J.P. Latge, C.M. Hull, and N.P. Keller. 2010. Aspergillus fumigatus LaeA-mediated phagocytosis is associated with a decreased hydrophobin layer. Infect. Immun. 78, 823–829.

    PubMed  CAS  Google Scholar 

  • Dagenais, T.R. and N.P. Keller. 2009. Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin. Microbiol. Rev. 22, 447–465.

    PubMed  CAS  Google Scholar 

  • Daniel, R. 2004. The soil metagenome — a rich resource for the discovery of novel natural products. Curr. Opin. Biot. 15, 199–204.

    CAS  Google Scholar 

  • Dowzer, C.E. and J.M. Kelly. 1989. Cloning of the creA gene from Aspergillus nidulans: a gene involved in carbon catabolite repression. Curr. Genet. 15, 457–459.

    PubMed  CAS  Google Scholar 

  • Dowzer, C.E. and J.M. Kelly. 1991. Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol. Cell. Biol. 11, 5701–5709.

    PubMed  CAS  Google Scholar 

  • Dreyer, J., H. Eichhorn, E. Friedlin, H. Kurnsteiner, and U. Kuck. 2007. A homologue of the Aspergillus velvet gene regulates both cephalosporin C biosynthesis and hyphal fragmentation in Acremonium chrysogenum. Appl. Environ. Microbiol. 73, 3412–3422.

    PubMed  CAS  Google Scholar 

  • Du, W., G.R. Obrian, and G.A. Payne. 2007. Function and regulation of aflJ in the accumulation of aflatoxin early pathway intermediate in Aspergillus flavus. Food Addit. Contam. 24, 1043–1050.

    PubMed  CAS  Google Scholar 

  • Dufour, N. and R.P. Rao. 2011. Secondary metabolites and other small molecules as intercellular pathogenic signals. FEMS Microbiol. Lett. 314, 10–17.

    PubMed  CAS  Google Scholar 

  • Duran, R.M., J.W. Cary, and A.M. Calvo. 2007. Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation. Appl. Microbiol. Biot. 73, 1158–1168.

    CAS  Google Scholar 

  • Edwards, D., J.A.H. Murray, and A.G. Smith. 1998. Multiple genes encoding the conserved CCAAT-box transcription factor complex are expressed in Arabidopsis. Plant Physiol. 117, 1015–1022.

    PubMed  CAS  Google Scholar 

  • Ehrlich, K.C., B.G. Montalbano, and J.W. Cary. 1999. Binding of the C6-zinc cluster protein, AFLR, to the promoters of aflatoxin pathway biosynthesis genes in Aspergillus parasiticus. Gene 230, 249–257.

    PubMed  CAS  Google Scholar 

  • Espeso, E.A. and M.A. Penalva. 1992. Carbon catabolite repression can account for the temporal pattern of expression of a penicillin biosynthetic gene in Aspergillus nidulans. Mol. Microbiol. 6, 1457–1465.

    PubMed  CAS  Google Scholar 

  • Espeso, E.A., J. Tilburn, H.N. Arst, and M.A. Penalva. 1993. PH regulation is a major determinant in expression of a fungal penicillin biosynthetic gene. EMBO J. 12, 3947–3956.

    PubMed  CAS  Google Scholar 

  • Felenbok, B., M. Flipphi, and I. Nikolaev. 2001. Ethanol catabolism in Aspergillus nidulans: A model system for studying gene regulation. Prog. Nucleic Acid Res. Mol. Biol. 69, 149–204.

    PubMed  CAS  Google Scholar 

  • Fernandes, M., N.P. Keller, and T.H. Adams. 1998. Sequence-specific binding by Aspergillus nidulans AflR, a C6 zinc cluster protein regulating mycotoxin biosynthesis. Mol. Microbiol. 28, 1355–1365.

    PubMed  CAS  Google Scholar 

  • Flaherty, J.E. and G.A. Payne. 1997. Overexpression of aflR leads to upregulation of pathway gene transcription and increased aflatoxin production in Aspergillus flavus. Appl. Environ. Microbiol. 63, 3995–4000.

    PubMed  CAS  Google Scholar 

  • Flaherty, J.E., A.M. Pirttila, B.H. Bluhm, and C.P. Woloshuk. 2003. PAC1, a pH-regulatory gene from Fusarium verticillioides. Appl. Environ. Microbiol. 69, 5222–5227.

    PubMed  CAS  Google Scholar 

  • Flaherty, J.E. and C.P. Woloshuk. 2004. Regulation of fumonisin biosynthesis in Fusarium verticillioides by a zinc binuclear clustertype gene, ZFR1. Appl. Environ. Microbiol. 70, 2653–2659.

    PubMed  CAS  Google Scholar 

  • Fox, E.M., D.M. Gardiner, N.P. Keller, and B.J. Howlett. 2008. A Zn(II)2Cys6 DNA binding protein regulates the sirodesmin PL biosynthetic gene cluster in Leptosphaeria maculans. Fungal Genet. Biol. 45, 671–682.

    PubMed  CAS  Google Scholar 

  • Fox, E.M. and B.J. Howlett. 2008a. Biosynthetic gene clusters for epipolythiodioxopiperazines in filamentous fungi. Mycol. Res. 112, 162–169.

    PubMed  CAS  Google Scholar 

  • Fox, E.M. and B.J. Howlett. 2008b. Secondary metabolism: regulation and role in fungal biology. Curr. Opin. Microbiol. 11, 481–487.

    PubMed  CAS  Google Scholar 

  • Gardiner, D.M. and B.J. Howlett. 2005. Bioinformatic and expression analysis of the putative gliotoxin biosynthetic gene cluster of Aspergillus fumigatus. FEMS Microbiol. Lett. 248, 241–248.

    PubMed  CAS  Google Scholar 

  • Gardiner, D.M., R.S. Jarvis, and B.J. Howlett. 2005. The ABC transporter gene in the sirodesmin biosynthetic gene cluster of Leptosphaeria maculans is not essential for sirodesmin production but facilitates self-protection. Fungal Genet. Biol. 42, 257–263.

    PubMed  CAS  Google Scholar 

  • Georgianna, D.R., N.D. Fedorova, J.L. Burroughs, A.L. Dolezal, J.W. Bok, S. Horowitz-Brown, C.P. Woloshuk, J. Yu, N.P. Keller, and G.A. Payne. 2010. Beyond aflatoxin: four distinct expression patterns and functional roles associated with Aspergillus flavus secondary metabolism gene clusters. Mol. Plant Pathol. 11, 213–226.

    PubMed  CAS  Google Scholar 

  • Georgianna, D.R. and G.A. Payne. 2009. Genetic regulation of aflatoxin biosynthesis: from gene to genome. Fungal Genet. Biol. 46, 113–125.

    PubMed  CAS  Google Scholar 

  • Hertweck, C. 2009. Hidden biosynthetic treasures brought to light. Nat. Chem. Biol. 5, 450–452.

    PubMed  CAS  Google Scholar 

  • Hoff, B., J. Kamerewerd, C. Sigl, R. Mitterbauer, I. Zadra, H. Kurnsteiner, and U. Kuck. 2010. Two components of a velvetlike complex control hyphal morphogenesis, conidiophore development, and penicillin biosynthesis in Penicillium chrysogenum. Eukaryot. Cell. 9, 1236–1250.

    PubMed  CAS  Google Scholar 

  • Hoff, B., E.K. Schmitt, and U. Kuck. 2005. CPCR1, but not its interacting transcription factor AcFKH1, controls fungal arthrospore formation in Acremonium chrysogenum. Mol. Microbiol. 56, 1220–1233.

    PubMed  CAS  Google Scholar 

  • Hoffmeister, D. and N.P. Keller. 2007. Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat. Prod. Rep. 24, 393–416.

    PubMed  CAS  Google Scholar 

  • Hohn, T.M., R. Krishna, and R.H. Proctor. 1999. Characterization of a transcriptional activator controlling trichothecene toxin biosynthesis. Fungal Genet. Biol. 26, 224–235.

    PubMed  CAS  Google Scholar 

  • Hortschansky, P., M. Eisendle, Q. Al-Abdallah, A.D. Schmidt, S. Bergmann, M. Thon, O. Kniemeyer, and et al. 2007. Interaction of HapX with the CCAAT-binding complex — a novel mechanism of gene regulation by iron. EMBO J. 26, 3157–3168.

    PubMed  CAS  Google Scholar 

  • Huang, X. and H.M. Li. 2009. Cloning and bioinformatic analysis of lovastatin biosynthesis regulatory gene lovE. Chinese Med. J. 122, 1800–1805.

    CAS  Google Scholar 

  • Hynes, M.J. 1975. Studies on role of area gene in regulation of nitrogen catabolism in Aspergillus nidulans. Aust. J. Biol. Sci. 28, 301–313.

    PubMed  CAS  Google Scholar 

  • Ipcho, S.V.S., K.C. Tan, G. Koh, J. Gummer, R.P. Oliver, R.D. Trengove, and P.S. Solomon. 2010. The transcription factor StuA regulates central carbon metabolism, mycotoxin production, and effector gene expression in the wheat pathogen Stagonospora nodorum. Eukaryot. Cell. 9, 1100–1108.

    PubMed  CAS  Google Scholar 

  • Joyner, P.M., J. Liu, Z. Zhang, J. Merritt, F. Qi, and R.H. Cichewicz. 2010. Mutanobactin A from the human oral pathogen Streptococcus mutans is a cross-kingdom regulator of the yeast-mycelium transition. Org. Biomol. Chem. 8, 5486–5489.

    PubMed  CAS  Google Scholar 

  • Kafer, E. 1965. Origins of translocations in Aspergillus nidulans. Genetics 52, 217–232.

    PubMed  CAS  Google Scholar 

  • Kale, S.P., L. Milde, M.K. Trapp, J.C. Frisvad, N.P. Keller, and J.W. Bok. 2008. Requirement of LaeA for secondary metabolism and sclerotial production in Aspergillus flavus. Fungal Genet. Biol. 45, 1422–1429.

    PubMed  CAS  Google Scholar 

  • Kasahara, K., T. Miyamoto, T. Fujimoto, H. Oguri, T. Tokiwano, H. Oikawa, Y. Ebizuka, and I. Fujii. 2010. Solanapyrone synthase, a possible diels-alderase and iterative type I polyketide synthase encoded in a biosynthetic gene cluster from Alternaria solani. Chembiochem. 11, 1245–1252.

    PubMed  CAS  Google Scholar 

  • Kato, M. 2005. An overview of the CCAAT-box binding factor in filamentous fungi: Assembly, nuclear translocation, and transcriptional enhancement. Biosci. Biotechnol. Biochem. 69, 663–672.

    PubMed  CAS  Google Scholar 

  • Kato, N., W. Brooks, and A.M. Calvo. 2003. The expression of sterigmatocystin and penicillin genes in Aspergillus nidulans is controlled by veA, a gene required for sexual development. Eukaryot. Cell. 2, 1178–1186.

    PubMed  CAS  Google Scholar 

  • Keller, N.P., C. Nesbitt, B. Sarr, T.D. Phillips, and G.B. Burow. 1997. pH Regulation of sterigmatocystin and aflatoxin biosynthesis in Aspergillus spp. Phytopathology 87, 643–648.

    PubMed  CAS  Google Scholar 

  • Keller, N.P., G. Turner, and J.W. Bennett. 2005. Fungal secondary metabolism — from biochemistry to genomics. Nat. Rev. Microbiol. 3, 937–947.

    PubMed  CAS  Google Scholar 

  • Kennedy, J., K. Auclair, S.G. Kendrew, C. Park, J.C. Vederas, and C.R. Hutchinson. 1999. Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science 284, 1368–1372.

    PubMed  CAS  Google Scholar 

  • Kim, J.E., J.M. Jin, H. Kim, J.C. Kim, S.H. Yun, and Y.W. Lee. 2006. GIP2, a putative transcription factor that regulates the aurofusarin biosynthetic gene cluster in Gibberella zeae. Appl. Environ. Microbiol. 72, 1645–1652.

    PubMed  CAS  Google Scholar 

  • Kosalkova, K., C. Garcia-Estrada, R.V. Ullan, R.P. Godio, R. Feltrer, F. Teijeira, E. Mauriz, and J.F. Martin. 2009. The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Biochimie 91, 214–225.

    PubMed  CAS  Google Scholar 

  • Li, Q., M. Herrler, N. Landsberger, N. Kaludov, V.V. Ogryzko, Y. Nakatani, and A.P. Wolffe. 1998. Xenopus NF-Y pre-sets chromatin to potentiate p300 and acetylation-responsive transcription from the Xenopus hsp70 promoter in vivo. EMBO J. 17, 6300–6315.

    PubMed  CAS  Google Scholar 

  • Li, S.J., K. Myung, D. Guse, B. Donkin, R.H. Proctor, W.S. Grayburn, and A.M. Calvo. 2006. FvVE1 regulates filamentous growth, the ratio of microconidia to macroconidia and cell wall formation in Fusarium verticillioides. Mol. Microbiol. 62, 1418–1432.

    PubMed  CAS  Google Scholar 

  • Litzka, O., K.T. Bergh, and A.A. Brakhage. 1996. The Aspergillus nidulans penicillin-biosynthesis gene aat (penDE) is controlled by a CCAAT-containing DNA element. Eur. J Biochem. 238, 675–682.

    PubMed  CAS  Google Scholar 

  • Litzka, O., P. Papagiannopolous, M.A. Davis, M.J. Hynes, and A.A. Brakhage. 1998. The penicillin regulator PENR1 of Aspergillus nidulans is a HAP-like transcriptional complex. Eur. J. Biochem. 251, 758–767.

    PubMed  CAS  Google Scholar 

  • Losada, L., O. Ajayi, J.C. Frisvad, J.J. Yu, and W.C. Nierman. 2009. Effect of competition on the production and activity of secondary metabolites in Aspergillus species. Med. Mycol. 47, S88–S96.

    PubMed  CAS  Google Scholar 

  • Lysoe, E., M. Pasquali, A. Breakspear, and H.C. Kistler. 2011. The transcription factor FgStuAp influences spore development, pathogenicity, and secondary metabolism in Fusarium graminearum. Mol. Plant Microbe Interact. 24, 54–67.

    PubMed  Google Scholar 

  • MacPherson, S., M. Larochelle, and B. Turcotte. 2006. A fungal family of transcriptional regulators: The zinc cluster proteins. Microbiol. Mol. Biol. Rev. 70, 583–604.

    PubMed  CAS  Google Scholar 

  • Martin, J.F. 2000. Molecular control of expression of penicillin biosynthesis genes in fungi: Regulatory proteins interact with a bidirectional promoter region. J. Bacteriol. 182, 2355–2362.

    PubMed  CAS  Google Scholar 

  • Mcnabb, D.S., Y.Y. Xing, and L. Guarente. 1995. Cloning of yeast Hap5 — a novel subunit of a heterotrimeric complex required for ccaat binding. Gene. Dev. 9, 47–58.

    PubMed  CAS  Google Scholar 

  • Meyers, D.M., G. Obrian, W.L. Du, D. Bhatnagar, and G.A. Payne. 1998. Characterization of aflJ, a gene required for conversion of pathway intermediates to aflatoxin. Appl. Environ. Microbiol. 64, 3713–3717.

    PubMed  CAS  Google Scholar 

  • Mihlan, M., V. Homann, T.W.D. Liu, and B. Tudzynski. 2003. AREA directly mediates nitrogen regulation of gibberellin biosynthesis in Gibberella fujikuroi, but its activity is not affected by NMR. Mol. Microbiol. 47, 975–991.

    PubMed  CAS  Google Scholar 

  • Miller, K.Y., T.M. Toennis, T.H. Adams, and B.L. Miller. 1991. Isolation and transcriptional characterization of a morphological modifier — the Aspergillus nidulans stunted (stua) gene. Mol. General Genet. 227, 285–292.

    CAS  Google Scholar 

  • Mukherjee, P.K. and C.M. Kenerley. 2010. Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein, Vel1. Appl. Environ. Microbiol. 76, 2345–2352.

    PubMed  CAS  Google Scholar 

  • Mulder, W., I.H.J.M. Scholten, R.W. Deboer, and L.A. Grivell. 1994. Sequence of the Hap3 transcription factor of Kluyveromyces-Lactis predicts the presence of a novel 4-cysteine zinc-finger motif. Mol. General Genet. 245, 96–106.

    CAS  Google Scholar 

  • Myung, K., S.J. Li, R.A.E. Butchko, M. Busman, R.H. Proctor, H.K. Abbas, and A.M. Calvo. 2009. FvVE1 regulates biosynthesis of the mycotoxins fumonisins and fusarins in Fusarium verticillioides. J. Agr. Food Chem. 57, 5089–5094.

    CAS  Google Scholar 

  • O’Callaghan, J., P.C. Stapleton, and A.D.W. Dobson. 2006. Ochratoxin A biosynthetic genes in Aspergillus ochraceus are differentially regulated by pH and nutritional stimuli. Fungal Genet. Biol. 43, 213–221.

    PubMed  Google Scholar 

  • Oh, D.C., C.A. Kauffman, P.R. Jensen, and W. Fenical. 2007. Induced production of emericellamides A and B from the marine-derived fungus Emericella sp. in competing co-culture. J. Nat. Prod. 70, 515–520.

    PubMed  CAS  Google Scholar 

  • Osbourn, A. 2010. Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation. Trends Genet. 26, 449–457.

    PubMed  CAS  Google Scholar 

  • Palmer, J.M. and N.P. Keller. 2010. Secondary metabolism in fungi: does chromosomal location matter? Curr. Opin. Microbiol. 13, 431–436.

    PubMed  CAS  Google Scholar 

  • Pedley, K.F. and J.D. Walton. 2001. Regulation of cyclic peptide biosynthesis in a plant pathogenic fungus by a novel transcription factor. Proc. Natl. Acad. Sci. USA 98, 14174–14179.

    PubMed  CAS  Google Scholar 

  • Perrin, R.M., N.D. Fedorova, J.W. Bok, R.A. Cramer, J.R. Wortman, H.S. Kim, W.C. Nierman, and N.P. Keller. 2007. Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. PLoS Pathog. 3, e50.

    PubMed  Google Scholar 

  • Pinkham, J.L. and L. Guarente. 1985. Cloning and molecular analysis of the Hap2 locus — a global regulator of respiratory genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 5, 3410–3416.

    PubMed  CAS  Google Scholar 

  • Polley, S.D. and M.X. Caddick. 1996. Molecular characterisation of meaB, a novel gene affecting nitrogen metabolite repression in Aspergillus nidulans. FEBS Lett. 388, 200–205.

    PubMed  CAS  Google Scholar 

  • Price, M.S., J.J. Yu, W.C. Nierman, H.S. Kim, B. Pritchard, C.A. Jacobus, D. Bhatnagar, T.E. Cleveland, and G.A. Payne. 2006. The aflatoxin pathway regulator AflR induces gene transcription inside and outside of the aflatoxin biosynthetic cluster. FEMS Microbiol. Lett. 255, 275–279.

    PubMed  CAS  Google Scholar 

  • Punt, P.J., M.A. Dingemanse, A. Kuyvenhoven, R.D.M. Soede, P.H. Pouwels, and C.A.M.J. Vandenhondel. 1990. Functional elements in the promoter region of the Aspergillus nidulans gpdA gene encoding glyceraldehyde-3-phosphate dehydrogenase. Gene. 93, 101–109.

    PubMed  CAS  Google Scholar 

  • Reyes-Dominguez, Y., J.W. Bok, H. Berger, E.K. Shwab, A. Basheer, A. Gallmetzer, C. Scazzocchio, N. Keller, and J. Strauss. 2010. Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans. Mol. Microbiol. 76, 1376–1386.

    PubMed  CAS  Google Scholar 

  • Rodrigues, A.P., A.S. Carvalho, A.S. Santos, C.N. Alves, J.L. do Nascimento Snr, and E.O. Silva. 2011. Kojic acid, a secondary metabolite from Aspergillus sp., acts as an inducer of macrophage activation. Cell Biol. Int. 35, 335–343.

    PubMed  CAS  Google Scholar 

  • Rohlfs, M., M. Albert, N.P. Keller, and F. Kempken. 2007. Secondary chemicals protect mould from fungivory. Biol. Lett. 3, 523–525.

    PubMed  Google Scholar 

  • Rohlfs, M. and A.C. Churchill. 2011. Fungal secondary metabolites as modulators of interactions with insects and other arthropods. Fungal Genet. Biol. 48, 23–34.

    PubMed  CAS  Google Scholar 

  • Sakai, K., H. Kinoshita, T. Shimizu, and T. Nihira. 2008. Construction of a citrinin gene cluster expression system in heterologous Aspergillus oryzae. J. Biosci. Bioeng. 106, 466–472.

    PubMed  CAS  Google Scholar 

  • Scherlach, K. and C. Hertweck. 2009. Triggering cryptic natural product biosynthesis in microorganisms. Org. Biomol. Chem. 7, 1753–1760.

    PubMed  CAS  Google Scholar 

  • Schmitt, E.K., B. Hoff, and U. Kuck. 2004. AcFKH1, a novel member of the forkhead family, associates with the RFX transcription factor CPCR1 in the cephalosporin C-producing fungus Acremonium chrysogenum. Gene. 342, 269–281.

    PubMed  CAS  Google Scholar 

  • Schmitt, E.K. and U. Kuck. 2000. The fungal CPCR1 protein, which binds specifically to beta-lactam biosynthesis genes, is related to human regulatory factor X transcription factors. J. Biol. Chem. 275, 9348–9357.

    PubMed  CAS  Google Scholar 

  • Schrettl, M., N. Beckmann, J. Varga, T. Heinekamp, I.D. Jacobsen, C. Jochl, T.A. Moussa, and et al. 2010a. HapX-mediated adaption to iron starvation is crucial for virulence of Aspergillus fumigatus. PLoS Pathog. 6. e1001124.

    PubMed  Google Scholar 

  • Schrettl, M., S. Carberry, K. Kavanagh, H. Haas, G.W. Jones, J. O’Brien, A. Nolan, J. Stephens, O. Fenelon, and S. Doyle. 2010b. Self-protection against gliotoxin—a component of the gliotoxin biosynthetic cluster, GliT, completely protects Aspergillus fumigatus against exogenous gliotoxin. PLoS Pathog. 6, e1000952.

    PubMed  Google Scholar 

  • Schroeckh, V., K. Scherlach, H.W. Nutzmann, E. Shelest, W. Schmidt-Heck, J. Schuemann, K. Martin, C. Hertweck, and A.A. Brakhage. 2009. Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc. Natl. Acad. Sci. USA 106, 14558–14563.

    PubMed  CAS  Google Scholar 

  • Shaaban, M.I., J.W. Bok, C. Lauer, and N.P. Keller. 2010. Suppressor mutagenesis identifies a velvet complex remediator of Aspergillus nidulans secondary metabolism. Eukaryot. Cell. 9, 1816–1824.

    PubMed  CAS  Google Scholar 

  • Sheppard, D.C., T. Doedt, L.Y. Chiang, H.S. Kim, D. Chen, W.C. Nierman, and S.G. Filler. 2005. The Aspergillus fumigatus StuA protein governs the up-regulation of a discrete transcriptional program during the acquisition of developmental competence. Mol. Biol. Cell. 16, 5866–5879.

    PubMed  CAS  Google Scholar 

  • Shimizu, K., J. Hicks, T.P. Huang, and N.P. Keller. 2003. Pka, Ras and RGS protein interactions regulate activity of AflR, a Zn(II)2Cys6 transcription factor in Aspergillus nidulans. Genetics 165, 1095–1104.

    PubMed  CAS  Google Scholar 

  • Shimizu, T., H. Kinoshita, and T. Nihira. 2007. Identification and in vivo functional analysis by gene disruption of ctnA, an activator gene involved in citrinin biosynthesis in Monascus purpureus. Appl. Environ. Microbiol. 73, 5097–5103.

    PubMed  CAS  Google Scholar 

  • Sigl, C., H. Haas, T. Specht, K. Pfaller, H. Kurnsteiner, and I. Zadra. 2011. Among developmental regulators StuA but not BrlA is essential for penicillin V production in Penicillium chrysogenum. Appl. Environ. Microbiol. 77, 972–982.

    PubMed  CAS  Google Scholar 

  • Steidl, S., M.J. Hynes, and A.A. Brakhage. 2001. The Aspergillus nidulans multimeric CCAAT binding complex AnCF is negatively autoregulated via its hapB subunit gene. J. Mol. Biol. 306, 643–653.

    PubMed  CAS  Google Scholar 

  • Sugui, J.A., J. Pardo, Y.C. Chang, A. Muellbacher, K.A. Zarember, E.M. Galvez, L. Brinster, and et al. 2007. Role of laeA in the regulation of alb1, gliP, conidial morphology, and virulence in Aspergillus fumigatus. Eukaryot. Cell. 6, 1552–1561.

    PubMed  CAS  Google Scholar 

  • Tag, A.G., G.F. Garifullina, A.W. Peplow, C. Ake, Jr., T.D. Phillips, T.M. Hohn, and M.N. Beremand. 2001. A novel regulatory gene, Tri10, controls trichothecene toxin production and gene expression. Appl. Environ. Microbiol. 67, 5294–5302.

    PubMed  CAS  Google Scholar 

  • Tilburn, J., S. Sarkar, D.A. Widdick, E.A. Espeso, M. Orejas, J. Mungroo, M.A. Penalva, and H.N. Arst. 1995. The Aspergillus Pacc zinc-finger transcription factor mediates regulation of both acid-expressed and alkaline-expressed genes by ambient pH. EMBO J. 14, 779–790.

    PubMed  CAS  Google Scholar 

  • Trapp, S.C., T.M. Hohn, S. McCormick, and B.B. Jarvis. 1998. Characterization of the gene cluster for biosynthesis of macrocyclic trichothecenes in Myrothecium roridum. Mol. General Genet. 257, 421–432.

    CAS  Google Scholar 

  • Tsuji, G., Y. Kenmochi, Y. Takano, J. Sweigard, L. Farrall, I. Furusawa, O. Horino, and Y. Kubo. 2000. Novel fungal transcriptional activators, Cmr1p of Colletotrichum lagenarium and pig1p of Magnaporthe grisea, contain Cys2His2 zinc finger and Zn(II)2Cys6 binuclear cluster DNA-binding motifs and regulate transcription of melanin biosynthesis genes in a developmentally specific manner. Mol. Microbiol. 38, 940–954.

    PubMed  CAS  Google Scholar 

  • Tudzynski, B., H. Kawaide, and Y. Kamiya. 1998. Gibberellin biosynthesis in Gibberella fujikuroi: Cloning and characterization of the copalyl diphosphate synthase gene. Curr. Genet. 34, 234–240.

    PubMed  CAS  Google Scholar 

  • Twumasi-Boateng, K., Y. Yu, D. Chen, F.N. Gravelat, W.C. Nierman, and D.C. Sheppard. 2009. Transcriptional profiling identifies a role for brlA in the response to nitrogen depletion and for StuA in the regulation of secondary metabolite clusters in Aspergillus fumigatus. Eukaryot. Cell. 8, 104–115.

    PubMed  CAS  Google Scholar 

  • Vanhuijsduijnen, R.H., X.Y. Li, D. Black, H. Matthes, C. Benoist, and D. Mathis. 1990. Coevolution from yeast to mouse — cDNA cloning of the 2 Nf-y (Cp-1/Cbf) subunits. EMBO J. 9, 3119–3127.

    Google Scholar 

  • Wagner, D., A. Schmeinck, M. Mos, I.Y. Morozov, M.X. Caddick, and B. Tudzynski. 2010. The bZIP transcription factor MeaB mediates nitrogen metabolite repression at specific loci. Eukaryot. Cell. 9, 1588–1601.

    PubMed  CAS  Google Scholar 

  • Weidner, G., S. Steidl, and A.A. Brakhage. 2001. The Aspergillus nidulans homoaconitase gene lysF is negatively regulated by the multimeric CCAAT-binding complex AnCF and positively regulated by GATA sites. Arch. Microbiol. 175, 122–132.

    PubMed  CAS  Google Scholar 

  • Wiemann, P., D.W. Brown, K. Kleigrewe, J.W. Bok, N.P. Keller, H.U. Humpf, and B. Tudzynski. 2010. FfVel1 and FfLae1, components of a velvet-like complex in Fusarium fujikuroi, affect differentiation, secondary metabolism and virulence. Mol. Microbiol. 77, 972–994.

    CAS  Google Scholar 

  • Wiemann, P., A. Willmann, M. Straeten, K. Kleigrewe, M. Beyer, H.U. Humpf, and B. Tudzynski. 2009. Biosynthesis of the red pigment bikaverin in Fusarium fujikuroi: genes, their function and regulation. Mol. Microbiol. 72, 931–946.

    PubMed  CAS  Google Scholar 

  • Wight, W.D., K.H. Kim, C.B. Lawrence, and J.D. Walton. 2009. Biosynthesis and role in virulence of the histone deacetylase inhibitor depudecin from Alternaria brassicicola. Mol. Plant Microbe Interact. 22, 1258–1267.

    PubMed  CAS  Google Scholar 

  • Wilson, R.A. and H.N. Arst. 1998. Mutational analysis of AREA, a transcriptional activator mediating nitrogen metabolite repression in Aspergillus nidulans and a member of the “streetwise” GATA family of transcription factors. Microbiol. Mol. Biol. Rev. 62, 586–596.

    PubMed  CAS  Google Scholar 

  • Woloshuk, C.P., K.R. Foutz, J.F. Brewer, D. Bhatnagar, T.E. Cleveland, and G.A. Payne. 1994. Molecular characterization of AflR, a regulatory locus for aflatoxin biosynthesis. Appl. Environ. Microbiol. 60, 2408–2414.

    PubMed  CAS  Google Scholar 

  • Wong, K.H., M.J. Hynes, R.B. Todd, and M.A. Davis. 2007. Transcriptional control of nmrA by the bZIP transcription factor MeaB reveals a new level of nitrogen regulation in Aspergillus nidulans. Mol. Microbiol. 66, 534–551.

    PubMed  CAS  Google Scholar 

  • Xing, W., C. Deng, and C.H. Hu. 2010. Molecular cloning and characterization of the global regulator LaeA in Penicillium citrinum. Biotechnol. Lett. 32, 1733–1737.

    PubMed  CAS  Google Scholar 

  • Yu, J.H., R.A. Butchko, M. Fernandes, N.P. Keller, T.J. Leonard, and T.H. Adams. 1996. Conservation of structure and function of the aflatoxin regulatory gene aflR from Aspergillus nidulans and A. flavus. Curr. Genet. 29, 549–555.

    PubMed  CAS  Google Scholar 

  • Yu, J.J., P.K. Chang, J.W. Cary, M. Wright, D. Bhatnagar, T.E. Cleveland, G.A. Payne, and J.E. Linz. 1995. Comparative mapping of aflatoxin pathway gene clusters in Aspergillus parasiticus and Aspergillus flavus. Appl. Environ. Microbiol. 61, 2365–2371.

    PubMed  CAS  Google Scholar 

  • Yu, J.J., P.K. Chang, K.C. Ehrlich, J.W. Cary, D. Bhatnagar, T.E. Cleveland, G.A. Payne, J.E. Linz, C.P. Woloshuk, and J.W. Bennett. 2004. Clustered pathway genes in aflatoxin biosynthesis. Appl. Environ. Microbiol. 70, 1253–1262.

    PubMed  CAS  Google Scholar 

  • Yu, J.H. and N. Keller. 2005. Regulation of secondary metabolism in filamentous fungi. Annu. Rev. Phytopathol. 43, 437–458.

    PubMed  CAS  Google Scholar 

  • Zhang, M.Y. and T. Miyake. 2009. Development and media regulate alternative splicing of a methyltransferase pre-mRNA in Monascus pilosus. J. Agr. Food Chem. 57, 4162–4167.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy P. Keller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, W., Keller, N.P. Transcriptional regulatory elements in fungal secondary metabolism. J Microbiol. 49, 329–339 (2011). https://doi.org/10.1007/s12275-011-1009-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-011-1009-1

Keywords

Navigation