Skip to main content
Log in

Sulfolipid accumulation in Mycobacterium tuberculosis disrupted in the mce2 operon

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Mycobacterium tuberculosis, the causative agent of tuberculosis, has a lipid-rich cell wall that serves as an effective barrier against drugs and toxic host cell products, which may contribute to the organism’s persistence in a host. M. tuberculosis contains four homologous operons called nice (mce1–4) that encode putative ABC transporters involved in lipid importation across the cell wall. Here, we analyzed the lipid composition of M. tuberculosis disrupted in the mce2 operon. High resolution mass spectrometric and thin layer chromatographic analyses of the mutant’s cell wall lipid extracts showed accumulation of SL-1 and SL1278 molecules. Radiographic quantitative analysis and densitometry revealed 2.9, 3.9 and 9.8-fold greater amount of [35S] SL-1 in the mce2 operon mutant compared to the wild type M. tuberculosis during the early/mid logarithmic, late logarithmic and stationary phase of growth in liquid broth, respectively. The amount of [35S] SL1278 in the mutant also increased progressively over the same growth phases. The expression of the mce2 operon genes in the wild type strain progressively increased from the logarithmic to the stationary phase of bacterial growth in vitro, which inversely correlated with the proportion of radiolabel incorporation into SL-1 and SL1278 at these phases. Since the mce2 operon is regulated in wild type M. tuberculosis, its cell wall may undergo changes in SL-1 and SL1278 contents during a natural course of infection and this may serve as an important adaptive strategy for M. tuberculosis to maintain persistence in a host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belanger, A.E. and J.M. Inamine. 2000. Genetics of Cell Wall Biosynthesis, pp. 191–202. In G.F. Hartfull and W.R.J. Jacobs (eds.), Molecular Genetics of Mycobacteria. American Society of Microbiology, Washington, DC, USA.

    Google Scholar 

  • Besra, G.S. and P.J. Brennan. 1997. The mycobacterial cell wall: biosynthesis of arabinogalactan and lipoarabinomannan. Biochem. Soc. Trans. 25, 845–850.

    PubMed  CAS  Google Scholar 

  • Brennan, P.J. and P. Draper. 1994. Ultrastructure of Mycobacterium tuberculosis, pp. 271–306. In B.R. Bloom (ed.), Tuberculosis: Pathogenesis, Protection and Control. ASM Press, Washington, DC, USA.

    Google Scholar 

  • Casali, N. and L.W. Riley. 2007. A phylogenomic analysis of the Actinomycetales mce operons. BMC Genomics 8, 60.

    Article  PubMed  Google Scholar 

  • Converse, S.E., J.D. Mougous, M.D. Leavell, J.A. Leary, C.R. Bertozzi, and J.S. Cox. 2003. MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc. Natl. Acad. Sci. USA 100, 6121–6126.

    Article  PubMed  CAS  Google Scholar 

  • Daffe, M. and P. Draper. 1998. The envelope layers of mycobacteria with reference to their pathogenicity. Adv. Microb. Physiol. 39, 131–203.

    Article  PubMed  CAS  Google Scholar 

  • Dassa, E. and P. Bouige. 2001. The ABC of ABCS: a phylogenetic and functional classification of ABC systems in living organisms. Res. Microbiol. 152, 211–229.

    Article  PubMed  CAS  Google Scholar 

  • Dobson, G., D.E. Minnikin, S.M. Minnikin, J.H. Parlett, M. Goodfellow, M. Ridell, and M. Magnusson. 1985. Systematic analysis of complex mycobacterial lipids, pp. 237–265. In M. Goodfellow and D.E. Minnikin (eds.), Chemical Methods in Bacterial Systematics. Academic Press, London, UK.

    Google Scholar 

  • Dunphy, K.Y., R.H. Senaratne, M. Masuzawa, L.V. Kendall, and L.W. Riley. 2010. Attenuation of Mycobacterium tuberculosis functionally disrupted in a fatty acyl-coenzyme A synthetase gene fadD5. J. Infect. Dis. 201, 1232–1239.

    Article  PubMed  CAS  Google Scholar 

  • Fratti, R.A., J. Chua, I. Vergne, and V. Deretic. 2003. Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc. Natl. Acad. Sci. USA 100, 5437–5442.

    Article  PubMed  CAS  Google Scholar 

  • Gangadharam, P.R., M.L. Cohn, and G. Middlebrook. 1963. Infectivity, pathogenicity and sulpholipid fraction of some Indian and British strains of tubercle Bacilli. Tubercle 44, 452–455.

    Article  PubMed  CAS  Google Scholar 

  • Geisel, R.E., K. Sakamoto, D.G. Russell, and E.R. Rhoades. 2005. In vivo activity of released cell wall lipids of Mycobacterium bovis bacillus Calmette-Guerin is due principally to trehalose mycolates. J. Immunol. 174, 5007–5015.

    PubMed  CAS  Google Scholar 

  • Houben, E.N., L. Nguyen, and J. Pieters. 2006. Interaction of pathogenic mycobacteria with the host immune system. Curr. Opin. Microbiol. 9, 76–85.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, P., M.W. Schelle, M. Jain, F.L. Lin, C.J. Petzold, M.D. Leavell, J.A. Leary, J.S. Cox, and C.R. Bertozzi. 2007. PapA1 and PapA2 are acyltransferases essential for the biosynthesis of the Mycobacterium tuberculosis virulence factor sulfolipid-1. Proc. Natl. Acad. Sci. USA 104, 11221–11226.

    Article  PubMed  CAS  Google Scholar 

  • Lin, H.H., D.E. Faunce, M. Stacey, A. Terajewicz, T. Nakamura, J. Zhang-Hoover, M. Kerley, M.L. Mucenski, S. Gordon, and J. Stein-Streilein. 2005. The macrophage F4/80 receptor is required for the induction of antigen-specific efferent regulatory T cells in peripheral tolerance. J. Exp. Med. 201, 1615–1625.

    Article  PubMed  CAS  Google Scholar 

  • Livak, K.J. and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408.

    Article  PubMed  CAS  Google Scholar 

  • Marjanovic, O., T. Miyata, A. Goodridge, L.V. Kendall, and L.W. Riley. 2010. Mce2 operon mutant strain of Mycobacterium tuberculosis is attenuated in C57BL/6 mice. Tuberculosis 90, 50–56.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, A.G., C.L. Hendrickson, and G.S. Jackson. 1998. Mass spectrom. Review 17, 1–35.

    CAS  Google Scholar 

  • Middlebrook, G., C.M. Coleman, and W.B. Schaefer. 1959. Sulfolipid from virulent tubercle Bacilli. Proc. Natl. Acad. Sci. USA 45, 1801–1804.

    Article  PubMed  CAS  Google Scholar 

  • Minnikin, D.E. 1982. Lipids: complex lipids, their chemistry, biosynthesis and roles, pp. 95–184. In C. Ratledge and J. Stanford(eds.), The Biology of Mycobacteria. Academic Press, Ltd., London, UK.

    Google Scholar 

  • Okamoto, Y., Y. Fujita, T. Naka, M. Hirai, I. Tomiyasu, and I. Yano. 2006. Mycobacterial sulfolipid shows a virulence by inhibiting cord factor induced granuloma formation and TNF-alpha release. Microb. Pathog. 40, 245–253.

    Article  PubMed  CAS  Google Scholar 

  • Pandey, A.K. and C.M. Sassetti. 2008. Mycobacterial persistence requires the utilization of host cholesterol. Proc. Natl. Acad. Sci. USA 105, 4376–4380.

    Article  PubMed  CAS  Google Scholar 

  • Parish, T. and N.G. Stoker. 2000. Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology 146, 1969–1975.

    PubMed  CAS  Google Scholar 

  • Rao, V., N. Fujiwara, S.A. Porcelli, and M.S. Glickman. 2005. Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J. Exp. Med. 201, 535–543.

    Article  PubMed  CAS  Google Scholar 

  • Reed, M.B., P. Domenech, C. Manca, H. Su, A.K. Barczak, B.N. Kreiswirth, G. Kaplan, and C.E. Barry, 3rd. 2004. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431, 84–87.

    Article  PubMed  CAS  Google Scholar 

  • Rousseau, C., O.C. Turner, E. Rush, Y. Bordat, T.D. Sirakova, P.E. Kolattukudy, S. Ritter, I.M. Orme, B. Gicquel, and M. Jackson. 2003. Sulfolipid deficiency does not affect the virulence of Mycobacterium tuberculosis H37Rv in mice and guinea pigs. Infect. Immun. 71, 4684–4690.

    Article  PubMed  CAS  Google Scholar 

  • Santangelo Mde, L., F. Blanco, E. Campos, M. Soria, M.V. Bianco, L. Klepp, A. Alito, O. Zabal, A. Cataldi, and F. Bigi. 2009. Mce2R from Mycobacterium tuberculosis represses the expression of the mce2 operon. Tuberculosis 89, 22–28.

    Article  PubMed  Google Scholar 

  • Senaratne, R.H., B. Sidders, P. Sequeira, G. Saunders, K. Dunphy, O. Marjanovic, J.R. Reader, and et al. 2008. Mycobacterium tuberculosis strains disrupted in mce3 and mce4 operons are attenuated in mice. J. Med. Microbiol. 57, 164–170.

    Article  PubMed  CAS  Google Scholar 

  • Shimono, N., L. Morici, N. Casali, S. Cantrell, B. Sidders, S. Ehrt, and L.W. Riley. 2003. Hypervirulent mutant of Mycobacterium tuberculosis resulting from disruption of the mce1 operon. Proc. Natl. Acad. Sci. USA 100, 15918–15923.

    Article  PubMed  CAS  Google Scholar 

  • Stacey, M., G.W. Chang, J.Q. Davies, M.J. Kwakkenbos, R.D. Sanderson, J. Hamann, S. Gordon, and H.H. Lin. 2003. The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. Blood 102, 2916–2924.

    Article  PubMed  CAS  Google Scholar 

  • Vergne, I., J. Chua, S.B. Singh, and V. Deretic. 2004. Cell biology of Mycobacterium tuberculosis phagosome. Annu. Rev. Cell. Dev. Biol. 20, 367–394.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., D. English, and B.R. Andersen. 1991. Activation of human neutrophils by Mycobacterium tuberculosis-derived sulfolipid-1. J. Immunol. 146, 2730–2736.

    PubMed  CAS  Google Scholar 

  • Zhang, L., J.C. Gay, D. English, and B.R. Andersen. 1994. Neutrophil priming mechanisms of sulfolipid-I and N-formyl-methionyl-leucyl-phenylalanine. J. Biomed. Sci. 1, 253–262.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., M.B. Goren, T.J. Holzer, and B.R. Andersen. 1988. Effect of Mycobacterium tuberculosis-derived sulfolipid I on human phagocytic cells. Infect. Immun. 56, 2876–2883.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivera Marjanovic.

Additional information

Supplemental material for this article may be found at http://www.springer.com/content/120956

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marjanovic, O., Iavarone, A.T. & Riley, L.W. Sulfolipid accumulation in Mycobacterium tuberculosis disrupted in the mce2 operon. J Microbiol. 49, 441–447 (2011). https://doi.org/10.1007/s12275-011-0435-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-011-0435-4

Keywords

Navigation