Skip to main content
Log in

Identification of S-nitrosylation of proteins of Helicobacter pylori in response to nitric oxide stress

  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Innate and adaptive immune responses are activated in humans when Helicobacter pylori invades the gastric mucosa. Nitric oxide (NO) and reactive nitrogen species are important immune effectors, which can exert their functions through oxidation and S-nitrosylation of proteins. S-nitrosoglutathione and sodium nitroprus-side were used as NO donors and H. pylori cells were incubated with these compounds to analyze the inhibitory effect of NO. The suppressing effect of NO on H. pylori has been shown in vitro. Furthermore, the proteins modified by S-nitrosylation in H. pylori were identified through the biotin switch method in association with matrix-assisted laser desorption ionization/time-of-flight tandem mass spectrometry (MALDI-TOF-MS/MS). Five S-nitrosylated proteins identified were a chaperone and heat-shock protein (GroEL), alkyl hydroperoxide reductase (TsaA), urease alpha subunit (UreA), HP0721, and HP0129. Importantly, S-nitrosylation of TsaA and UreA were confirmed using purified recombinant proteins. Considering the importance of these enzymes in antioxidant defenses, adherence, and colonization, NO may exert its antibacterial actions by targeting enzymes through S-nitrosylation. Identification of protein S-nitrosylation may contribute to an understanding of the antibacterial actions of NO. Our findings provide an insight into potential targets for the development of novel therapeutic agents against H. pylori infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, L.M., A. Raudonikiene, P.S. Hoffman, and L.B. Poole. 2001. Essential thioredoxin-dependent peroxiredoxin system from Helicobacter pylori: genetic and kinetic characterization. J. Bacteriol. 183, 1961–1973.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, H.J. and I.S. Roberts. 2005. Identification of a new sialic acid-binding protein in Helicobacter pylori. FEMS. Immunol. Med. Microbiol. 44, 163–169.

    Article  PubMed  CAS  Google Scholar 

  • Bryk, R., P. Griffin, and C. Nathan. 2000. Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407, 211–215.

    Article  PubMed  CAS  Google Scholar 

  • Choi, Y.W., S.A. Park, H.W. Lee, D.S. Kim, and N.G. Lee. 2008. Analysis of growth phase-dependent proteome profiles reveals differential regulation of mRNA and protein in Helicobacter pylori. Proteomics 8, 2665–2675.

    Article  PubMed  CAS  Google Scholar 

  • Chuang, M.H., M.S. Wu, J.T. Lin, and S.H. Chiou. 2005. Proteomic analysis of proteins expressed by Helicobacter pylori under oxidative stress. Proteomics 5, 3895–3901.

    Article  PubMed  CAS  Google Scholar 

  • Cole, S.P., V.F. Kharitonov, and D.G. Guiney. 1999. Effect of nitric oxide on Helicobacter pylori morphology. J. Infect. Dis. 180, 1713–1717.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, H.R. and L.B. Poole. 1997. Roles for the two cysteine residues of AhpC in catalysis of peroxide reduction by alkyl hydroperoxide reductase from Salmonella typhimurium. Biochemistry 36, 13349–13356.

    Article  PubMed  CAS  Google Scholar 

  • Florio, W., G. Batoni, S. Esin, D. Bottai, G. Maisetta, F. Favilli, F.L. Brancatisano, and M. Campa. 2004. Influence of culture medium on the resistance and response of Mycobacterium bovis BCG to reactive nitrogen intermediates. Microbes Infect. 8, 434–441.

    Article  Google Scholar 

  • Forrester, M.T., M.W. Foster, M. Benhar, and J.S. Stamler. 2009. Detection of protein S-nitrosylation with the biotin-switch technique. Free Radic. Biol. Med. 46, 119–126.

    Article  PubMed  CAS  Google Scholar 

  • Forrester, M.T., M.W. Foster, and J.S. Stamler. 2007. Assessment and application of the biotin switch technique for examining protein S-nitrosylation under conditions of pharmacologically induced oxidative stress. J. Biol. Chem. 282, 13977–13983.

    Article  PubMed  CAS  Google Scholar 

  • Horwich, A.L., G.W. Farr, and W.A. Fenton. 2006. GroEL-GroESmediated protein folding. Chem. Rev. 106, 1917–1930.

    Article  PubMed  CAS  Google Scholar 

  • Huang, B. and C. Chen. 2006. An ascorbate-dependent artifact that interferes with the interpretation of the biotin switch assay. Free Radic Biol. Med. 15, 562–567.

    Article  Google Scholar 

  • Jaffrey, S.R. and S.H. Snyder. 2001. The biotin switch method for the detection of S-nitrosylated proteins. Sci. STKE. 86, pl1.

    Google Scholar 

  • Kim, N., D.L. Weeks, J.M. Shin, D.R. Scott, M.K. Young, and G. Sachs. 2002. Proteins released by Helicobacter pylori in vitro. J. Bacteriol. 184, 6155–6162.

    Article  PubMed  CAS  Google Scholar 

  • Kuwahara, H., Y. Miyamoto, T. Akaike, T. Kubota, T. Sawa, S. Okamoto, and H. Maeda. 2000. Helicobacter pylori urease suppresses bactericidal activity of peroxynitrite via carbon dioxide production. Infect. Immun. 68, 4378–4383.

    Article  PubMed  CAS  Google Scholar 

  • López-Sánchez, L.M., F.J. Corrales, M. De La Mata, J. Muntané, and A. Rodríguez-Ariza. 2008. Detection and proteomic identification of S-nitrosated proteins in human hepatocytes. Methods Enzymol. 440, 273–281.

    Article  PubMed  Google Scholar 

  • Marikar, F.M., D. Ma, J. Ye, B. Tang, W. Zheng, J. Zhang, M. Lu, and Z. Hua. 2008. Expression of recombinant human FADD, preparation of its polyclonal antiserum and the application in immunoassays. Cell. Mol. Immunol. 5, 471–474.

    Article  PubMed  CAS  Google Scholar 

  • Martin, P.R. and R.P. Hausinger. 1992. Site-directed mutagenesis of the active site cysteine in Klebsiella aerogenes urease. J. Biol. Chem. 267, 20024–20027.

    PubMed  CAS  Google Scholar 

  • Martínez-Ruiz, A. and S. Lamas. 2004. Detection and proteomic identification of S-nitrosylated proteins in endothelial cells. Arch. Biochem. Biophys. 423, 192–199.

    Article  PubMed  Google Scholar 

  • McGee, D.J. and H.L. Mobley. 2000. Pathogenesis of Helicobacter pylori infection. Curr. Opin. Gastroenterol. 16, 24–31.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, H., H. Yoshiyama, H. Takeuchi, T. Mizote, K. Okita, and T. Nakazawa. 1998. Urease plays an important role in the chemotactic motility of Helicobacter pylori in a viscous environment. Infect. Immun. 66, 4832–4837.

    PubMed  CAS  Google Scholar 

  • Nam, K.T., S.Y. Oh, B. Ahn, Y.B. Kim, D.D. Jang, K.H. Yang, K.B. Hahm, and D.Y. Kim. 2004. Decreased Helicobacter pylori associated gastric carcinogenesis in mice lacking inducible nitric oxide synthase. Gut 53, 1250–1255.

    Article  PubMed  CAS  Google Scholar 

  • Persichini, T., M. Colasanti, G.M. Lauro, and P. Ascenzi. 1998. Cysteine nitrosylation inactivates the HIV-1 protease. Biochem. Biophys. Res. Commun. 250, 575–576.

    Article  PubMed  CAS  Google Scholar 

  • Poole, R.K. 2005. Nitric oxide and nitrosative stress tolerance in bacteria. Biochem. Soc. Trans. 33, 176–180.

    Article  PubMed  CAS  Google Scholar 

  • Qu, W., Y. Zhou, C. Shao, Y. Sun, Q. Zhang, C. Chen, and J. Jia. 2009. Helicobacter pylori protein response to nitric oxide stress. J. Microbiol. 47, 486–493.

    Article  PubMed  CAS  Google Scholar 

  • Raupach, B. and S.H. Kaufmann. 2001. Immune responses to intracellular bacteria. Curr. Opin. Immunol. 13, 417–428.

    Article  PubMed  CAS  Google Scholar 

  • Rhee, K.Y., H. Erdjument-Bromage, P. Tempst, and C.F. Nathan. 2005. S-nitroso proteome of Mycobacterium tuberculosis enzymes of intermediary metabolism and antioxidant defense. Proc. Natl. Acad. Sci. USA 102, 467–472.

    Article  PubMed  CAS  Google Scholar 

  • Sabarth, N., S. Lamer, U. Zimny-Arndt, P.R. Jungblut, T.F. Meyer, and D. Bumann. 2002. Identification of surface proteins of Helicobacter pylori by selective biotinylation, affinity purification, and two-dimensional gel electrophoresis. J. Biol. Chem. 277, 27896–27902.

    Article  PubMed  CAS  Google Scholar 

  • Salvati, L., M. Mattu, M. Colasanti, A. Scalone, G. Venturini, L. Gradoni, and P. Ascenzi. 2001. NO donors inhibit Leishmania infantum cysteine proteinase activity. Biochim. Biophys. Acta. 1545, 357–366.

    Article  PubMed  CAS  Google Scholar 

  • Schapiro, J.M., S.J. Libby, and F.C. Fang. 2003. Inhibition of bacterial DNA replication by zinc mobilization during nitrosative stress. Proc. Natl. Acad. Sci. USA 100, 8496–8501.

    Article  PubMed  CAS  Google Scholar 

  • Schröder, E. and C.P. Ponting. 1998. Evidence that peroxiredoxins are novel members of the thioredoxin fold superfamily. Protein Sci. 7, 2465–2468.

    Article  PubMed  Google Scholar 

  • Scott, D.R., E.A. Marcus, D.L. Weeks, A. Lee, K. Melchers, and G. Sachs. 2000. Expression of the Helicobacter pylori ureI gene is required for acidic pH activation of cytoplasmic urease. Infect. Immun. 68, 470–477.

    Article  PubMed  CAS  Google Scholar 

  • Seaver, L.C. and J.A. Imlay. 2001. Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J. Bacteriol. 183, 7173–7181.

    Article  PubMed  CAS  Google Scholar 

  • Shao, C., Q. Zhang, W. Tang, W. Qu, Y. Zhou, Y. Sun, H. Yu, and J. Jia. 2008a. The changes of proteomes components of Helicobacter pylori in response to acid stress without urea. J. Microbiol. 46, 331–337.

    Article  PubMed  CAS  Google Scholar 

  • Shao, C., Q. Zhang, Y. Sun, Z. Liu, J. Zeng, Y. Zhou, X. Yu, and J. Jia. 2008b. Helicobacter pylori protein response to human bile stress. J. Med. Microbiol. 57, 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Todd, M.J. and R.P. Hausinger. 1991. Identification of the essential cysteine residue in Klebsiella aerogenes urease. J. Biol. Chem. 266, 24327–24331.

    PubMed  CAS  Google Scholar 

  • Torta, F., V. Usuelli, A. Malgaroli, and A. Bachi. 2008. Proteomic analysis of protein S-nitrosylation. Proteomics 8, 4484–4494.

    Article  PubMed  CAS  Google Scholar 

  • Tsuda, M., M. Karita, T. Mizote, M.G. Morshed, K. Okita, and T. Nakazawa. 1994. Essential role of Helicobacter pylori urease in gastric colonization: definite proof using a urease-negative mutant constructed by gene replacement. Eur. J. Gastroenterol. Hepatol. 6, S49–52.

    Google Scholar 

  • Venturini, G., M. Colasanti, L. Salvati, L. Gradoni, and P. Ascenzi. 2000. Nitric oxide inhibits falcipain, the Plasmodium falciparum trophozoite cysteine protease. Biochem. Biophys. Res. Commun. 267, 190–193.

    Article  PubMed  CAS  Google Scholar 

  • Voland, P., D.L. Weeks, D. Vaira, C. Prinz, and G. Sachs. 2002. Specific identification of three low molecular weight membraneassociated antigens of Helicobacter pylori. Aliment. Pharmacol. Ther. 16, 533–544.

    Article  PubMed  CAS  Google Scholar 

  • Zaki, M.H., T. Akuta, and T. Akaike. 2005. Nitric oxide-induced nitrative stress involved in microbial pathogenesis. J. Pharmacol. Sci. 98, 117–129.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., S.B. Mulrooney, A.F. Leung, Y. Zeng, B.B. Ko, R.P. Hausinger, and H. Sun. 2006. Inhibition of urease by bismuth (III): implications for the mechanism of action of bismuth drugs. Biometals 19, 503–511.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengjiang Gao or Jihui Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, W., Zhou, Y., Sun, Y. et al. Identification of S-nitrosylation of proteins of Helicobacter pylori in response to nitric oxide stress. J Microbiol. 49, 251–256 (2011). https://doi.org/10.1007/s12275-011-0262-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-011-0262-7

Keywords

Navigation