Skip to main content
Log in

Purification and characterization of the α-glucosidase produced by thermophilic fungus Thermoascus aurantiacus CBMAI 756

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

An α-glucosidase enzyme produced by the fungus Thermoascus aurantiacus CBMAI 756 was purified by ultra filtration, ammonium sulphate precipitation, and chromatography using Q Sepharose, Sephacryl S-200, and Superose 12 columns. The apparent molecular mass of the enzyme was 83 kDa as determined in gel electrophoresis. Maximum activity was observed at pH 4.5 at 70°C. Enzyme showed stability stable in the pH range of 3.0–9.0 and lost 40% of its initial activity at the temperatures of 40, 50, and 60°C. In the presence of ions Na+, Ba2+, Co2+, Ni2+, Mg2+, Mn2+, Al3+, Zn2+, Ca2+ this enzyme maintained 90–105% of its maximum activity and was inhibited by Cr3+, Ag+, and Hg2+. The enzyme showed a transglycosylation property, by the release of oligosaccharides after 3 h of incubation with maltose, and specificity for short maltooligosaccharides and α-PNPG. The Km measured for the α-glucosidase was 0.07 μM, with a Vmax of 318.0 μmol/min/mg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anindyawati, T., Y.G. Ann, K. Ito, M. Izzuka, and N. Minamiura. 1998. Two kinds of novel α-glucosidases from Aspergillus awamori KT-11: their purifications, properties, and specificities. J. Ferment. Bioeng. 85, 465–469.

    Article  CAS  Google Scholar 

  • Bergmeyer, H.U. and E. Bernt. 1974. Methods of enzymatic analysis, pp. 1205–1215. In H.U. Bergmeyer (ed.). Verlag Chimie/Academic Press, New York, N.Y., USA.

    Google Scholar 

  • Blum, H., H. Bier, and H.J. Gross. 1987. Improved silver staining of plant-proteins, RNA and DNA in polyacrylamide gels. Eletrophoresis 8, 93–99.

    Article  CAS  Google Scholar 

  • Bravo-Torres, J.C., J.C. Villagómez-Castro, C. Calvo-Méndez, A. Flores-Carreón, and E. López-Romero. 2004. Purification and biochemical characterization of a membrane-bound α-glucosidase from the parasite Entamoeba histolytica. Int. J. Parasitol. 34, 455–462.

    Article  PubMed  CAS  Google Scholar 

  • Brienzo, M., V. Arantes, and A.M.F. Milagres. 2008. Enzymology of the thermophilic ascomycetous fungus Thermoascus aurantiacus. Fungal Biol. Rev. 22, 120–130.

    Article  Google Scholar 

  • Carvalho, A.F.A., A.Z. Gonçalves, R. Silva, and E. Gomes. 2006. A specific short dextrin-hydrolyzing extracellular glucosidase from the thermophilic fungus Thermoascus aurantiacus 179-5. J. Microbiol. 44, 276–283.

    PubMed  CAS  Google Scholar 

  • Chiba, S. 1997. Molecular mechanism in α-glucosidase and glucoamylase. Biosci. Biotechnol. Biochem. 61, 1233–1239.

    Article  PubMed  CAS  Google Scholar 

  • Constantino, H.R., S.H. Brown, and R.M. Kelly. 1990. Purification and characterization of an α-glucosidase from a hyperthermophilic archaebacterium, Pyrococcus furiosus, exhibiting a temperature optimum of 105 to 115°C. J. Bacteriol. 172, 3654–3660.

    Google Scholar 

  • Dubois, M., K.A. Gilles, J.K. Hamilton, P.A. Robers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356.

    Article  CAS  Google Scholar 

  • Ezeji, T.C. and H. Bahl. 2006. Purification, characterization, and synergistic action of phytate-resistant α-amylase and α-glucosidase from Geobacillus thermodenitrificans HRO10. J. Biotechnol. 125, 27–38.

    Article  PubMed  CAS  Google Scholar 

  • Faridmoayer, A. and C.H. Scaman. 2004. An improved purification procedure for soluble processing α-glucosidase I from Saccharomyces cerevisiae overexpressing CWH41. Protein Expr. Purif. 33, 11–18.

    Article  PubMed  CAS  Google Scholar 

  • Fernánez-Arrojo, L., D. Marín, A.G. Segura, D. Linde, M. Alcalde, P. Gutiérrez-Alonso, I. Ghazi, F.J. Plou, M. Fernandéz-lobato, and A. Ballesteros. 2007. Transformation of maltose into prebiotic isomaltooligosaccharides by a novel α-glucosidase from Xantophyllomyces dendrorhous. Process Biochem. 42, 1530–1536.

    Article  CAS  Google Scholar 

  • Fontana, J.D., M. Gebara, M. Blumel, H. Schneider, C.R. Mackenzie, and K.G. Johnson. 1988. α-4-O-methyl-glucuronidase component of xylanolytic complexes. Methods Enzymol. 169, 560–571.

    Article  Google Scholar 

  • Frandsen, T. and B. Svensson. 1998. Plant α-glucosidases of the glycoside hydrolase family 31 molecular properties, substrate specificity, resction mechanism, and comparison with family members of different origin. Plant Mol. Biol. 37, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Gabriel, O. and S.F. Wang. 1969. Determination of enzymatic activity in polyacrylamide gels. Anal. Biochem. 27, 545–554.

    Article  PubMed  CAS  Google Scholar 

  • Giannesi, G.C., M.L.T.M. Polizeli, H.F. Terzine, and J.A. Jorge. 2006. A novel α-glucosidase from Chaetomium thermophilum var. coprophilum that converts maltose into trehalose: Purification and partial characterization of the enzyme. Process Biochem. 41, 1729–1735.

    Article  CAS  Google Scholar 

  • Hartree, E.F. 1972. Determination of protein: A modification of the Lowry method that gives a linear photometric response. Anal. Biochem. 48, 422–427.

    Article  PubMed  CAS  Google Scholar 

  • Herscovics, A. 1999. Processing glycosidases of Saccharomyces cerevisiae. Biochim. Biophys. Acta 1426, 275–285.

    PubMed  CAS  Google Scholar 

  • Iwata, H., T. Suzuki, and I. Aramaki. 2003. Purification and characterization of rice α-glucosidase, a key enzyme for alcohol fermentation of rice polish. J. Biosci. Bioeng. 95, 106–108.

    PubMed  CAS  Google Scholar 

  • Kashiwabara, S.S., S. Azuma, M. Tsuduki, and Y. Suzuki. 2000. The primary structure of the subunit in Bacillus thermoamyloliquefaciens KP1071 molecular mass 540,000 homohexameric α-glucosidase II belonging to the glycosyl hydrolae family 31. Biosci. Biotechnol. Biochem. 64, 1379–1393.

    Article  PubMed  CAS  Google Scholar 

  • Kato, N., S. Suyama, M. Shirokane, M. Kato, T. Kobayashi, and N. Tsukagoshi. 2002. Novel α-glucosidase from Aspergillus nidulans with strong transglycosylation activity. Appl. Environ. Microbiol. 68, 1250–1256.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K.Y., H. Nam, H. Kurihara, and S.M. Kim. 2008. Potent α-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry 69, 2820–2825.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S. and T. Satyanarayana. 2003. Purification and kineties of a raw starch-hydrolyzing, termostable, and neutral glucoamylase of the thermophylic mold Thermomucor indicae-seudaticae. Biotechnol. Prog. 19, 936–944.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural protein during the assembly of head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Leite, R.S.R., E. Gomes, and R. Silva. 2007. Characterization and comparison of thermostability of purified β-glucosidases from a mesophilic Aureobasidium pullulans and a thermophilic Thermoascus aurantiacus. Process Biochem. 42, 1101–1106.

    Article  CAS  Google Scholar 

  • Li, K.B. and K.Y. Chan. 1983. Production and properties of α-glucosidase from Lactobacillus acidophilus. Appl. Environ. Microbiol. 46, 1380–1387.

    PubMed  CAS  Google Scholar 

  • Martino, A., C. Schiraldi, S. Fusco, I. Di Lernia, T. Costabile, T. Pellicano, M. Marotta, and et al. 2001. Properties of the recombinant α-glucosidase from Sulfolobus solfataricus in relation to strach processing. J. Mol. Catal. B-Enzym. 11, 787–794.

    Article  CAS  Google Scholar 

  • Mehta, A., N. Zitzmann, P.M. Rudd, T.M. Block, and R.A. Dwek. 1998. α-Glucosidase inhibitors as potential broad based anti-viral agents. FEBS Lett. 430, 17–22.

    Article  PubMed  CAS  Google Scholar 

  • Melo, E.B., A.S. Gomes, and I. Carvalho. 2006. α- and β-Glucosidase inhibitors: chemical structure and biological activity. Tetrahedron 62, 10277–10302.

    Article  CAS  Google Scholar 

  • Merheb, C.W., H. Cabral, E. Gomes, and R. Da Silva. 2007. Partial characterization of protease from a thermophilic fungus, Thermoascus aurantiacus, and its hydrolytic activity on bovine casein. Food Chem. 104, 127–131.

    Article  CAS  Google Scholar 

  • Murata, T. and T. Usui. 2006. Enzymatic synthesis of oligosaccharides and neoglycoconjugates. Biosci. Biotechnol. Biochem. 70, 1049–1059.

    Article  PubMed  CAS  Google Scholar 

  • Naested, H., B. Kramhøft, F. Lok, K. Bojsen, S. Yu, and B. Svensson. 2006. Production of enzymatically active recombinant full-length barley high pI α-glucosidase of glycoside family 31 by high celldensity fermentation of Pichia pastoris and affinity purification. Protein Expr. Purif. 46, 56–63.

    Article  PubMed  CAS  Google Scholar 

  • Nashiru, O., S. Koh, S.Y. Lee, and D.S. Lee. 2001. Novel α-glucosidase from extreme thermophile Thermus caldophilus GK24. J. Biochem. Mol. Biol. 34, 347–354.

    CAS  Google Scholar 

  • Okuyama, M., Y. Tanimoto, T. Ito, A. Anzai, H. Mori, A. Kimura, H. Matsui, and S. Chiba. 2005. Purification and characterization of the hyper-glycosylated extracellular α-glucosidase from Schizosaccharomyces pombe. Enzyme Microb. Technol. 37, 472–480.

    Article  CAS  Google Scholar 

  • Palma-Fernandez, E.R.D., E. Gomes, and R. Da Silva. 2002. Purification and characterization of two β-glucosidases from thermophilic fungus Thermoascus aurantiacus. Folia Microbiol. 47, 685–690.

    Article  Google Scholar 

  • Piller, K., R.M. Daniel, and H.H. Petach. 1996. Properties and stabilization of an extracellular α-glucosidase from the extremely thermophilic archaebacteria Thermococcus strain AN1: enzyme activity at 130°C. Biochim. Biophys. Acta 1292, 197–205.

    PubMed  Google Scholar 

  • Schiraldi, C., A. Martino, T. Costabile, M. Generoso, M. Marotta, and M. De Rosa. 2004. Glucose production from maltodextrins employing a thermophilic immobilized cell biocatalyst in a packedbed reactor. Enzyme Microb. Technol. 34, 415–421.

    Article  CAS  Google Scholar 

  • Shimba, N., M. Shinagawa, W. Hoshino, H. Yamaguchi, N. Yamada, and E. Suzuki. 2009. Monitoring the hydrolysis and transglycosylation activity of α-glucosidase from Aspergillus niger by nuclear magnetic resonance spectroscopy and mass spectrometry. Anal. Biochem. 393, 23–28.

    Article  PubMed  CAS  Google Scholar 

  • Soro, R.Y., J.K. Diopoh, R.M. Willemot, and D. Combes. 2007. Enzymatic synthesis of polyglucosylfructosides from sucrose alone α-glucosidase isolated from the digestive juice of Archachatina ventricosa (Achatinideae). Enzyme Microb. Technol. 42, 44–51.

    Article  CAS  Google Scholar 

  • Sugimoto, M. and Y. Suzuki. 1994. Hydrolytic action on the mixture of maltose and soluble starch by α-glucosidase from Mucor javanicus IFO4570. Biosci. Biotechnol. Biochem. 58, 1535–1536.

    Article  CAS  Google Scholar 

  • Tanaka, Y., T. Aki, Y. Hidaka, Y. Furuya, S. Kawamoto, S. Shigeta, K. Ono, and O. Sizuki. 2002. Purification and characterization of a novel fungal α-glucosidase from Mortirella alliacea with high starch-hydrolitic actvity. Biosci. Biotechnol. Biochem. 66, 2415–2423.

    Article  PubMed  CAS  Google Scholar 

  • Torre-Bouscoulet, M.E., E. López-Romero, R. Balcázar-Orozco, C. Calvo-Méndez, and A. Flores-Carreón. 2004. Partial purification and biochemical characterization of a soluble α-glucosidase II-like activity from Candida albicans. FEMS Microbiol. Lett. 236, 123–128.

    Article  PubMed  CAS  Google Scholar 

  • Vieille, C. and J.G. Zeikus. 2001. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65, 1–43.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., L. Ma, Z. Li, Z. Du, Z. Liu, J. Qin, X. Wang, Z. Huang, L. Gu, and A.S.C. Chen. 2004. Synergetic inhibition of metal ions and genistein on α-glucosidase. FEBS Lett. 576, 46–50.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, K., H. Uchino, C. Ohmura, Y. Tanaka, T. Onuma, and R. Kawamori. 2004. Different effects of two α-glucosidase inhibitors, acarbose and voglibose, on serum 1,5-anhydroglucitol (1,5AG) level. J. Diabetes Complications 18, 183–186.

    Article  PubMed  Google Scholar 

  • Yamamoto, T., T. Unno, Y. Watanabe, M. Yamamoto, M. Okuyama, H. Mori, S. Chiba, and A. Kimura. 2004. Purification and characterization of Acremonium implicatum α-glucosidase having regioselectivity for α-1,3-glucosidic linkage. Biochim. Biophys. Acta 1700, 189–198.

    PubMed  CAS  Google Scholar 

  • Yamasaki, Y., T. Miyake, and Y. Suzuki. 1973. Properties of crystalline α-glucosidase from Mucor javanicus. Agr. Biol. Chem. 37, 251–259.

    CAS  Google Scholar 

  • Zacharius, R.M., T.E.Z.H. Morrisson, and J.J. Woodlock. 1969. Glycoprotein staing following electrophoresis on acrylamide gels. Anal. Biochem. 30, 148–152.

    Article  PubMed  CAS  Google Scholar 

  • Zdzieblo, A. and J. Synowiecki. 2002. New source of the thermostable α-glucosidase suitable for single step starch processing. Food Chem. 79, 485–491.

    Article  CAS  Google Scholar 

  • Zhou, C., Y. Xue, Y. Zhang, Y. Zeng, and Y. Ma. 2009. Recombinant expression and characterization of Thermoanaerobacter tengcongensis thermostable α-glucosidase with regioselectivity for high-yield isomaltooligosaccharides synthesis. J. Microbiol. Biotechnol. 19, 1547–1556.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Flávia Azevedo Carvalho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho, A.F.A., Boscolo, M., da Silva, R. et al. Purification and characterization of the α-glucosidase produced by thermophilic fungus Thermoascus aurantiacus CBMAI 756. J Microbiol. 48, 452–459 (2010). https://doi.org/10.1007/s12275-010-9319-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-010-9319-2

Keywords

Navigation