Skip to main content
Log in

Sporulation of several biocontrol fungi as affected by carbon and nitrogen sources in a two-stage cultivation system

  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

The development of fungal biopesticides requires the efficient production of large numbers spores or other propagules. The current study used published information concerning carbon concentrations and C:N ratios to evaluate the effects of carbon and nitrogen sources on sporulation of Paecilomyces lilacinus (IPC-P and M-14) and Metarhizium anisopliae (SQZ-1-21 and RS-4-1) in a two-stage cultivation system. For P. lilacinus IPCP, the optimal sporulation medium contained urea as the nitrogen source, dextrin as the carbon source at 1 g/L, a C:N ratio of 5:1, with ZnSO4·7H2O at 10 mg/L and CaCl2 at 3 g/L. The optimal sporulation medium for P. lilacinus M-14 contained soy peptone as the nitrogen source and maltose as the carbon source at 2 g/L, a C:N ratio of 10:1, with ZnSO4·7H2O at 250 mg/L, CuSO4·5H2O at 10 mg/L, H3BO4 at 5 mg/L, and Na2MoO4·2H2O at 5 mg/L. The optimum sporulation medium for M. anisopliae SQZ-1-21 contained urea as the nitrogen source, sucrose as the carbon source at 16 g/ L, a C:N ratio of 80:1, with ZnSO4·7H2O at 50 mg/L, CuSO4·5H2O at 50 mg/L, H3BO4 at 5 mg/L, and MnSO4·H2O at 10 mg/L. The optimum sporulation medium for M. anisopliae RS-4-1 contained soy peptone as the nitrogen source, sucrose as the carbon source at 4 g/L, a C:N ratio of 5:1, with ZnSO4·7H2O at 50 mg/L and H3BO4 at 50 mg/L. All sporulation media contained 17 g/L agar. While these results were empirically derived, they provide a first step toward low-cost mass production of these biocontrol agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cabanillas, E. and K.R. Barker. 1989. Impact of Paecilomyces lilacinus inoculum level and application time on control of Meloidogyne incognita on tomato. J. Nematol. 21, 115–120.

    CAS  PubMed  Google Scholar 

  • Elson, M.K., D.A. Schisler, and M.A. Jackson. 1998. Carbon-tonitrogen ratio, carbon concentration, and amino acid composition of growth media influence conidiation of Helminthosposition solani. Mycologia 98, 406–413.

    Article  Google Scholar 

  • Engelkes, C.A., R.L. Nuclo, and D.R. Fravel. 1997. Effect of carbon, nitrogen, and carbon-to-nitrogen ratio on growth, sporulation and biocontrol efficacy of Taloromyces flavus. Phytopathology 87, 500–505.

    Article  CAS  PubMed  Google Scholar 

  • Evans, R.C. and C.L. Black. 1981. Interaction between nitrogen sources and xylose affecting growth, conidiation, and polyphenoloxidase activity in Bipolaris maydis race T. Can. J. Bot. 59, 2102–2107.

    Article  CAS  Google Scholar 

  • Gao, L. and X.Z. Liu. 2009. A novel two-stage cultivation method to optimize carbon concentration and carbon-to-nitrogen ratio for sporulation of biocontrol fungi. Folia Microbiol. 54, 142–146.

    Article  CAS  Google Scholar 

  • Gao, L., M.H. Sun, X.Z. Liu, and Y.S. Che. 2007. Effects of carbon concentration and carbon to nitrogen ratio on the growth and sporulation of several biological control fungi. Mycol. Res. 111, 87–92.

    Article  CAS  PubMed  Google Scholar 

  • Gornova, I.B., E.P. Feofilova, V.M. Tereshina, E.A. Golovina, N.B. Krotkova, and V.P. Kholodova. 1992. Effect of carbohydrate content of Aspergillus japonicus spores on their survival in storage and subsequent germination. Mikerobiologiya 61, 549–554.

    CAS  Google Scholar 

  • Gray, S.N. and P.A. Markham. 1997. Model to explain the growth kinetics of the aphid-pathogenic fungus Erynia neoaphidis in liquid culture. Mycol. Res. 101, 1475–1483.

    Article  Google Scholar 

  • Harman, G.E., X. Jin, T.E. Stasz, G. Peruzzotti, A.C. Leopold, and A.G. Taylor. 1991. Production of conidial biomass of Trichoderma harzianum for biological control. Biol. Control 1, 23–28.

    Article  Google Scholar 

  • Jackson, M.A. and R.J. Bothast. 1990. Carbon concentration and carbon-to-nitrogen ratio influence submerged culture conidiation by the potential bioherbicide Colletotrichum truncatum NRRL 13737. Appl. Environ. Microbiol. 56, 3435–3438.

    CAS  PubMed  Google Scholar 

  • Jackson, M.A., M.R. Mcguire, and L.A. Lacey. 1997. Liquid culture production of desiccation tolerant blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus. Mycol. Res. 101, 35–41.

    Article  Google Scholar 

  • Jackson, M.A. and D.A. Schisler. 1992. The composition and attributes of Colletotrichum truncatum spores are altered by the nutritional environment. Appl. Environ. Microbiol. 58, 2260–2265.

    CAS  PubMed  Google Scholar 

  • Jackson, M.A. and P.J. Slininger. 1993. Submerged culture conidial germination and conidiation of the bioherbicide Colletotrichum truncatum are influenced by the amino acid composition of the medium. J. Ind. Microbiol. 12, 417–422.

    Article  CAS  Google Scholar 

  • Jatala, P., R. Kaltenback, and M. Bocangel. 1979. Biological control of Meloidogyne incognita acrita and Globodera pallida on potatoes. J. Nematol. 11, 303.

    Google Scholar 

  • Jatala, P., R. Kaltenback, M. Bocangel, A.J. Devaus, and R. Campos. 1980. Field application of Paecilomyces lilacinus for controlling Meloidogyne incognita on potatoes. J. Nematol. 12, 226–227.

    Google Scholar 

  • Jenjins, N.E. and M.A. Goettel. 1997. Methods for mass production of microbial control agents of grasshoppers and locusts. Memoirs of the Entomological Society of Canada 171, 37–48.

    Google Scholar 

  • Kang, S.C., S. Park, and D.G. Lee. 1998. Isolation and characterization of a chitinase cDNA from the entomopathogenic fungus, Metarhizium anisopliae. FEMS Microbiol. Lett. 165, 267–271.

    CAS  PubMed  Google Scholar 

  • Latgé, J.P. and J.J. Sanglier. 1985. Optimisation de la croissance et de la sporulation de Conidiobolus obscurus en milieu défini. Can. J. Bot. 63, 68–85.

    Google Scholar 

  • Leite, L.G., S.B. Alves, A. Batista, and D.W. Roberts. 2003. Effect of salts, vitamins, sugars and nitrogen sources on the growth of three genera of Entomophthorales: Batkoa, Furia, and Neozygites. Mycol. Res. 107, 872–878.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X.Z. and S.Y. Chen. 2002. Nutritional requirement of the nematophagous fungus Hirsutella rhossiliensis. Biocontrol. Sci. Technol. 12, 381–393.

    Article  Google Scholar 

  • Liu, X.Z. and S.Y. Chen. 2003. Nutritional requirements of Pochonia chlamydosporia and ARF18, fungi parasites of nematode eggs. J. Invertebr. Pathol. 83, 10–15.

    Article  CAS  PubMed  Google Scholar 

  • Schisler, D.A., M.A. Jackson, and R.J. Bothast. 1991. Influence of nutrition during conidiation of Colletotrichum truncatum on conidial germination and efficacy in inciting disease on Sesbania exaltata. Phytopathology 81, 587–590.

    Article  Google Scholar 

  • Shah, P.A., M. Aebi, and U. Tuor. 1998. Method to immobilize the aphid-pathogenic fungus Erynia neoaphidis in an alginate matrix for biocontrol. Appl. Environ. Microbiol. 64, 4260–4263.

    CAS  PubMed  Google Scholar 

  • Zaki, F.A. and D.S. Bhatti. 1990. Effect of castor (Ricinus communus) and the biocontrol fungus Paecilomyces lilacinus on Meloidogyne javanica. Nematologica 36, 114–122.

    Article  Google Scholar 

  • Zhang, S.A., D.A. Schisler, M.J. Boehm, and P.J. Slininger. 2005. Carbon-to-nitrogen ratio and carbon loading of production media influence freeze-drying survival and biocontrol efficacy of Cryptococcus nodaensis OH 182.9. Phytopathology 95, 626–631.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingzhong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, L., Liu, X. Sporulation of several biocontrol fungi as affected by carbon and nitrogen sources in a two-stage cultivation system. J Microbiol. 48, 767–770 (2010). https://doi.org/10.1007/s12275-010-0049-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-010-0049-2

Keywords

Navigation