Skip to main content
Log in

Helicobacter pylori apo-Fur regulation appears unconserved across species

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

The Ferric Uptake Regulator (Fur) is a transcriptional regulator that is conserved across a broad number of bacterial species and has been shown to regulate expression of iron uptake and storage genes. Additionally, Fur has been shown to be an important colonization factor of the gastric pathogen Helicobacter pylori. In H. pylori, Fur-dependent regulation appears to be unique in that Fur is able to act as a transcriptional repressor when bound to iron as well as in its iron free (apo) form. To date, apo-regulation has not been identified in any other bacterium. To determine whether Fur from other species has the capacity for apo-regulation, we investigated the ability of Fur from Escherichia coli, Campylobacter jejuni, Desulfovibrio vulgaris Hildenborough, Pseudomonas aeruginosa, and Vibrio cholerae to complement both iron-bound and apo-Fur regulation within the context of a H. pylori fur mutant. We found that while some Fur species (E. coli, C. jejuni, and V. cholerae) complemented iron-bound regulation, apo-regulation was unable to be complemented by any of the examined species. These data suggest that despite the conservation among bacterial Fur proteins, H. pylori Fur contains unique structure/function features that make it novel in comparison to Fur from other species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alm, R.A., L.S. Ling, D.T. Moir, B.L. King, E.D. Brown, P.C. Doig, D.R. Smith, and et al. 1999. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176–180.

    Article  PubMed  Google Scholar 

  • Andrews, S.C., A.K. Robinson, and F. Rodriguez-Quinones. 2003. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27, 215–237.

    Article  CAS  PubMed  Google Scholar 

  • Baltrus, D.A., M.R. Amieva, A. Covacci, T.M. Lowe, D.S. Merrell, K.M. Ottemann, M. Stein, N.R. Salama, and K. Guillemin. 2009. The complete genome sequence of Helicobacter pylori strain G27. J. Bacteriol. 191, 447–448.

    Article  CAS  PubMed  Google Scholar 

  • Bender, K.S., H.C. Yen, C.L. Hemme, Z. Yang, Z. He, Q. He, J. Zhou, K.H. Huang, E.J. Alm, T.C. Hazen, A.P. Arkin, and J.D. Wall. 2007. Analysis of a ferric uptake regulator (Fur) mutant of Desulfovibrio vulgaris Hildenborough. Appl. Environ. Microbiol. 73, 5389–5400.

    Article  CAS  PubMed  Google Scholar 

  • Bereswill, S., S. Greiner, A.H. van Vliet, B. Waidner, F. Fassbinder, E. Schiltz, J.G. Kusters, and M. Kist 2000. Regulation of ferritinmediated cytoplasmic iron storage by the ferric uptake regulator homolog (Fur) of Helicobacter pylori. J. Bacteriol. 182, 5948–5953.

    Article  CAS  PubMed  Google Scholar 

  • Bereswill, S., F. Lichte, S. Greiner, B. Waidner, F. Fassbinder, and M. Kist. 1999. The ferric uptake regulator (Fur) homologue of Helicobacter pylori: functional analysis of the coding gene and controlled production of the recombinant protein in Escherichia coli. Med. Microbiol. Immunol. 188, 31–40.

    Article  CAS  PubMed  Google Scholar 

  • Bijlsma, J.J., A.L.M. Lie, I.C. Nootenboom, C.M. Vandenbroucke-Grauls, and J.G. Kusters. 2000. Identification of loci essential for the growth of Helicobacter pylori under acidic conditions. J. Infect. Dis. 182, 1566–1569.

    Article  CAS  PubMed  Google Scholar 

  • Bijlsma, J.J., B. Waidner, A.H. Vliet, N.J. Hughes, S. Hag, S. Bereswill, D.J. Kelly, C.M. Vandenbroucke-Grauls, M. Kist, and J.G. Kusters. 2002. The Helicobacter pylori homologue of the ferric uptake regulator is involved in acid resistance. Infect. Immun. 70, 606–611.

    Article  CAS  PubMed  Google Scholar 

  • Blaser, M.J. 1998. Helicobacter pylori and gastric diseases. BMJ 316, 1507–1510.

    CAS  PubMed  Google Scholar 

  • Bury-Mone, S., J.M. Thiberge, M. Contreras, A. Maitournam, A. Labigne, and H. De Reuse. 2004. Responsiveness to acidity via metal ion regulators mediates virulence in the gastric pathogen Helicobacter pylori. Mol. Microbiol. 53, 623–638.

    Article  CAS  PubMed  Google Scholar 

  • Campanella, J.J., L. Bitincka, and J. Smalley. 2003. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics 4, 29.

    Article  PubMed  Google Scholar 

  • Carpenter, B., H. Gancz, S. Benoit, S. Evans, P.S.J. Michel, R. Maier, and D.S. Merrell. (2010 Submitted). Mutagenesis of conserved amino acids of Helicobacter pylori Fur reveals residues important for function.

  • Carpenter, B.M., T.K. McDaniel, J.M. Whitmire, H. Gancz, S. Guidotti, S. Censini, and D.S. Merrell. 2007. Expanding the Helicobacter pylori genetic toolbox: modification of an endogenous plasmid for use as a transcriptional reporter and complementation vector. Appl. Environ. Microbiol. 73, 7506–7514.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter, B.M., J.M. Whitmire, and D.S. Merrell. 2009. This is not your mother’s repressor: the complex role of fur in pathogenesis. Infect. Immun. 77, 2590–2601.

    Article  CAS  PubMed  Google Scholar 

  • de Lorenzo, V., S. Wee, M. Herrero, and J.B. Neilands. 1987. Operator sequences of the aerobactin operon of plasmid ColVK30 binding the ferric uptake regulation (fur) repressor. J. Bacteriol. 169, 2624–2630.

    PubMed  Google Scholar 

  • Delany, I., R. Ieva, A. Soragni, M. Hilleringmann, R. Rappuoli, and V. Scarlato. 2005. In vitro analysis of protein-operator interactions of the NikR and fur metal-responsive regulators of coregulated genes in Helicobacter pylori. J. Bacteriol. 187, 7703–7715.

    Article  CAS  PubMed  Google Scholar 

  • Delany, I., A.B. Pacheco, G. Spohn, R. Rappuoli, and V. Scarlato. 2001a. Iron-dependent transcription of the frpB gene of Helicobacter pylori is controlled by the Fur repressor protein. J. Bacteriol. 183, 4932–4937.

    Article  CAS  PubMed  Google Scholar 

  • Delany, I., G. Spohn, R. Rappuoli, and V. Scarlato. 2001b. The Fur repressor controls transcription of iron-activated and -repressed genes in Helicobacter pylori. Mol. Microbiol. 42, 1297–1309.

    Article  CAS  PubMed  Google Scholar 

  • Dubrac, S. and D. Touati. 2000. Fur positive regulation of iron superoxide dismutase in Escherichia coli: functional analysis of the sodB promoter. J. Bacteriol. 182, 3802–3808.

    Article  CAS  PubMed  Google Scholar 

  • Ernst, J.F., R.L. Bennett, and L.I. Rothfield. 1978. Constitutive expression of the iron-enterochelin and ferrichrome uptake systems in a mutant strain of Salmonella typhimurium. J. Bacteriol. 135, 928–934.

    CAS  PubMed  Google Scholar 

  • Ernst, F.D., S. Bereswill, B. Waidner, J. Stoof, U. Mader, J.G. Kusters, E.J. Kuipers, M. Kist, A.H. van Vliet, and G. Homuth. 2005a. Transcriptional profiling of Helicobacter pylori Fur- and iron-regulated gene expression. Microbiology 151, 533–546.

    Article  CAS  PubMed  Google Scholar 

  • Ernst, F.D., G. Homuth, J. Stoof, U. Mader, B. Waidner, E.J. Kuipers, M. Kist, J.G. Kusters, S. Bereswill, and A.H. van Vliet. 2005b. Ironresponsive regulation of the Helicobacter pylori iron-cofactored superoxide dismutase SodB is mediated by Fur. J. Bacteriol. 187, 3687–3692.

    Article  CAS  PubMed  Google Scholar 

  • Fiorini, F., S. Stefanini, P. Valenti, E. Chiancone, and D. De Biase. 2008. Transcription of the Listeria monocytogenes fri gene is growth-phase dependent and is repressed directly by Fur, the ferric uptake regulator. Gene 410, 113–121.

    Article  CAS  PubMed  Google Scholar 

  • Gancz, H., S. Censini, and D.S. Merrell. 2006. Iron and pH homeostasis intersect at the level of Fur regulation in the gastric pathogen Helicobacter pylori. Infect. Immun. 74, 602–614.

    Article  CAS  PubMed  Google Scholar 

  • Gutteridge, J.M., G.J. Quinlan, and T.W. Evans. 2001. The iron paradox of heart and lungs and its implications for acute lung injury. Free Radic Res. 34, 439–443.

    Article  CAS  PubMed  Google Scholar 

  • Hantke, K. 1984. Cloning of the repressor protein gene of ironregulated systems in Escherichia coli K12. Mol. Gen. Genet 197, 337–341.

    Article  CAS  PubMed  Google Scholar 

  • Hantke, K. 2001. Iron and metal regulation in bacteria. Curr. Opin. Microbiol. 4, 172–177.

    Article  CAS  PubMed  Google Scholar 

  • Heidelberg, J.F., J.A. Eisen, W.C. Nelson, R.A. Clayton, M.L. Gwinn, R.J. Dodson, D.H. Haft and et al. 2000. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406, 477–483.

    Article  CAS  PubMed  Google Scholar 

  • Heidelberg, J.F., R. Seshadri, S.A. Haveman, C.L. Hemme, I.T. Paulsen, J.F. Kolonay, J.A. Eisen and et al. 2004. The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat. Biotechnol. 22, 554–559.

    Article  CAS  PubMed  Google Scholar 

  • Holmes, K., F. Mulholland, B.M. Pearson, C. Pin, J. McNicholl-Kennedy, J.M. Ketley, and J.M. Wells. 2005. Campylobacter jejuni gene expression in response to iron limitation and the role of Fur. Microbiology 151, 243–257.

    Article  CAS  PubMed  Google Scholar 

  • Horsburgh, M.J., E. Ingham, and S.J. Foster. 2001. In Staphylococcus aureus, fur is an interactive regulator with PerR, contributes to virulence, and is necessary for oxidative stress resistance through positive regulation of catalase and iron homeostasis. J. Bacteriol. 183, 468–475.

    Article  CAS  PubMed  Google Scholar 

  • Horton, R.M., S.N. Ho, J.K. Pullen, H.D. Hunt, Z. Cai, and L.R. Pease. 1993. Gene splicing by overlap extension. Methods Enzymol. 217, 270–279.

    Article  CAS  PubMed  Google Scholar 

  • Litwin, C.M. and S.B. Calderwood. 1994. Analysis of the complexity of gene regulation by fur in Vibrio cholerae. J. Bacteriol. 176, 240–248.

    CAS  PubMed  Google Scholar 

  • Masse, E. and S. Gottesman. 2002. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc. Natl. Acad. Sci. USA 99, 4620–4625.

    Article  CAS  PubMed  Google Scholar 

  • Masse, E., H. Salvail, G. Desnoyers and M. Arguin. 2007. Small RNAs controlling iron metabolism. Curr. Opin. Microbiol. 10, 140–145.

    Article  CAS  PubMed  Google Scholar 

  • McArthur, K.E. and M. Feldman. 1989. Gastric acid secretion, gastrin release, and gastric emptying in humans as affected by liquid meal temperature. Am. J. Clin. Nutr. 49, 51–54.

    CAS  PubMed  Google Scholar 

  • Merrell, D.S., L.J. Thompson, C.C. Kim, H. Mitchell, L.S. Tompkins, A. Lee, and S. Falkow. 2003. Growth phase-dependent response of Helicobacter pylori to iron starvation. Infect. Immun. 71, 6510–6525.

    Article  CAS  PubMed  Google Scholar 

  • Mey, A.R., S.A. Craig, and S.M. Payne. 2005. Characterization of Vibrio cholerae RyhB: the RyhB regulon and role of ryhB in biofilm formation. Infect. Immun. 73, 5706–5719.

    Article  CAS  PubMed  Google Scholar 

  • Ochsner, U.A., A.I. Vasil, and M.L. Vasil. 1995. Role of the ferric uptake regulator of Pseudomonas aeruginosa in the regulation of siderophores and exotoxin A expression: purification and activity on iron-regulated promoters. J. Bacteriol. 177, 7194–7201.

    CAS  PubMed  Google Scholar 

  • Parkhill, J., B.W. Wren, K. Mungall, J.M. Ketley, C. Churcher, D. Basham, T. Chillingworth, and et al. 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403, 665–668.

    Article  CAS  PubMed  Google Scholar 

  • Perna, N.T., G. Plunkett, 3rd, V. Burland, B. Mau, J.D. Glasner, D.J. Rose, G.F. Mayhew, and et al. 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529–533.

    Article  CAS  PubMed  Google Scholar 

  • Pohl, E., J.C. Haller, A. Mijovilovich, W. Meyer-Klaucke, E. Garman, and M.L. Vasil. 2003. Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol. Microbiol. 47, 903–915.

    Article  CAS  PubMed  Google Scholar 

  • Ratledge, C. and L.G. Dover. 2000. Iron metabolism in pathogenic bacteria. Annu. Rev. Microbiol. 54, 881–941.

    Article  CAS  PubMed  Google Scholar 

  • Seyler, R.W., Jr., J.W. Olson, and R.J. Maier. 2001. Superoxide dismutase-deficient mutants of Helicobacter pylori are hypersensitive to oxidative stress and defective in host colonization. Infect. Immun. 69, 4034–4040.

    Article  CAS  PubMed  Google Scholar 

  • Sheikh, M.A. and G.L. Taylor. 2009. Crystal structure of the Vibriocholerae ferric uptake regulator (Fur) reveals insights into metal co-ordination. Mol. Microbiol. 72, 1208–1220.

    Article  CAS  PubMed  Google Scholar 

  • Spiegelhalder, C., B. Gerstenecker, A. Kersten, E. Schiltz, and M. Kist. 1993. Purification of Helicobacter pylori superoxide dismutase and cloning and sequencing of the gene. Infect. Immun. 61, 5315–5325.

    CAS  PubMed  Google Scholar 

  • Stover, C.K., X.Q. Pham, A.L. Erwin, S.D. Mizoguchi, P. Warrener, M.J. Hickey, F.S. Brinkman, and et al. 2000. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959–964.

    Article  CAS  PubMed  Google Scholar 

  • Sun, K., S. Cheng, M. Zhang, F. Wang, and L. Sun. 2008. Cys-92, Cys-95, and the C-terminal 12 residues of the Vibrio harveyi ferric uptake regulator (Fur) are functionally inessential. J. Microbiol. 46, 670–680.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, L.J., D.S. Merrell, B.A. Neilan, H. Mitchell, A. Lee, and S. Falkow. 2003. Gene expression profiling of Helicobacter pylori reveals a growth-phase-dependent switch in virulence gene expression. Infect. Immun. 71, 2643–2655.

    Article  CAS  PubMed  Google Scholar 

  • van Vliet, A.H., J. Stoof, S.W. Poppelaars, S. Bereswill, G. Homuth, M. Kist, E.J. Kuipers, and J.G. Kusters. 2003. Differential regulation of amidase- and formamidase-mediated ammonia production by the Helicobacter pylori fur repressor. J. Biol. Chem. 278, 9052–9057.

    Article  PubMed  Google Scholar 

  • van Vliet, A.H., J. Stoof, R. Vlasblom, S.A. Wainwright, N.J. Hughes, D.J. Kelly, S. Bereswill, and et al. 2002. The role of the Ferric Uptake Regulator (Fur) in regulation of Helicobacter pylori iron uptake. Helicobacter 7, 237–244.

    Article  PubMed  Google Scholar 

  • Wang, G., P. Alamuri, and R.J. Maier. 2006. The diverse antioxidant systems of Helicobacter pylori. Mol. Microbiol. 61, 847–860.

    Article  CAS  PubMed  Google Scholar 

  • Wilderman, P.J., N.A. Sowa, D.J. FitzGerald, P.C. FitzGerald, S. Gottesman, U.A. Ochsner, and M.L. Vasil. 2004. Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. Proc. Natl. Acad. Sci. USA 101, 9792–9797.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, B., W. Li, G. Guo, B. Li, Z. Liu, K. Jia, Y. Guo, X. Mao, and Q. Zou. 2009a. Identification of small noncoding RNAs in Helicobacter pylori by a bioinformatics-based approach. Curr. Microbiol. 58, 258–263.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, B., W. Li, G. Guo, B.S. Li, Z. Liu, B. Tang, X.H. Mao, and Q.M. Zou. 2009b. Screening and identification of natural antisense transcripts in Helicobacter pylori by a novel approach based on RNase I protection assay. Mol. Biol. Rep. 36, 1853–1858.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, B., Z. Liu, B.S. Li, B. Tang, W. Li, G. Guo, Y. Shi, F. Wang, Y. Wu, W.D. Tong, H. Guo, X.H. Mao, and Q.M. Zou. 2009c. Induction of microRNA-155 during Helicobacter pylori infection and its negative regulatory role in the inflammatory response. J. Infect. Dis. 200, 916–925.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Scott Merrell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miles, S., Carpenter, B.M., Gancz, H. et al. Helicobacter pylori apo-Fur regulation appears unconserved across species. J Microbiol. 48, 378–386 (2010). https://doi.org/10.1007/s12275-010-0022-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-010-0022-0

Keywords

Navigation