Skip to main content
Log in

Identification of the Vibrio vulnificus ahpCl gene and its influence on survival under oxidative stress and virulence

  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Pathogens have evolved sophisticated mechanisms to survive oxidative stresses imposed by host defense systems, and the mechanisms are closely linked to their virulence. In the present study, ahpCl, a homologue of Escherichia coli ahpC encoding a peroxiredoxin, was identified among the Vibrio vulnificus genes specifically induced by exposure to H2O2. In order to analyze the role of AhpCl in the pathogenesis of V. vulnificus, a mutant, in which the ahpCl gene was disrupted, was constructed by allelic exchanges. The ahpCl mutant was hypersusceptable to killing by reactive oxygen species (ROS) such as H2O2 and t-BOOH, which is one of the most commonly used hydroperoxides in vitro. The purified AhpCl reduced H2O2 in the presence of AhpF and NADH as a hydrogen donor, indicating that V. vulnificus AhpCl is a NADH-dependent peroxiredoxin and constitutes a peroxide reductase system with AhpF. Compared to wild type, the ahpCl mutant exhibited less cytotoxicity toward INT-407 epithelial cells in vitro and reduced virulence in a mouse model. In addition, the ahpCl mutant was significantly diminished in growth with INT-407 epithelial cells, reflecting that the ability of the mutant to grow, survive, and persist during infection is also impaired. Consequently, the combined results suggest that AhpCl and the capability of resistance to oxidative stresses contribute to the virulence of V. vulnificus by assuring growth and survival during infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brenot, A., K.Y. King, and M.G. Caparon. 2005. The PerR regulon in peroxide resistance and virulence of Streptococcus pyogenes. Mol. Microbiol. 55, 221–234.

    Article  CAS  PubMed  Google Scholar 

  • Christman, M.F., R.W. Morgan, F.S. Jacobson, and B.N. Ames. 1985. Positive control of a regulon for defences against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell. 41, 753–762.

    Article  CAS  PubMed  Google Scholar 

  • Falkow, S. 1988. Molecular Koch’s postulates applied to microbial pathogenicity. Rev. Infect. Dis. 10, 274–276.

    Google Scholar 

  • Fang, F.C., M.A. DeGroote, J.W. Foster, A.J. Bäumler, U. Ochsner, T. Testerman, S. Bearson, J.C. Giárd, Y. Xu, G. Campbell, and T. Laessig. 1999. Virulent Salmonella typhimurium has two periplasmic Cu, Zn-superoxide dismutases. Proc. Natl. Acad. Sci. USA 13, 7502–7507.

    Article  Google Scholar 

  • Goo, S.Y., H.J. Lee, W.H. Kim, K.L. Han, D.K. Park, H.J. Lee, S.M. Kim, K.S. Kim, K.H. Lee, and S.J. Park. 2006. Identification of OmpU of Vibrio vulnificus as a fibronectin-binding protein and its role in bacterial pathogenesis. Infect. Immun. 74, 5586–5594.

    Article  CAS  PubMed  Google Scholar 

  • Hase, C.C. and R.A. Finkelstein. 1993. Bacterial extracellular zinccontaining metalloproteinases. Microbiol. Rev. 57, 823–837.

    CAS  PubMed  Google Scholar 

  • Jeong, W., M.K. Cha, and I.H. Kim. 2000. Thioredoxin-dependent hydroperoxide peroxidase activity of bacterioferritin comigratory protein (BCP) as a new member of the thiol-specific antioxidant protein (TSA)/alkyl hydroperoxide peroxidase C (AhpC) family. J. Biol. Chem. 275, 2924–2930.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, H.G. and S.H. Choi. 2008. Evidence that AphB essential for the virulence of Vibrio vulnificus is a global regulator. J. Bacteriol. 190, 3768–3773.

    Article  CAS  PubMed  Google Scholar 

  • Jones, M.K. and J.D. Oliver. 2009. Vibrio vulnificus: Disease and pathogenesis. Infect. Immun. (Epub ahead of print)

  • Jönsson, T.J., H.R. Ellis, and L.B. Poole. 2007. Cysteine reactivity and thiol-disulfide interchange pathways in AhpF and AhpC1 of the bacterial alkyl hydroperoxide reductase system. Biochemistry 46, 5709–5721.

    Article  PubMed  Google Scholar 

  • Kang, I.H., J.S. Kim, and J.K. Lee. 2007. The virulence of Vibrio vulnificus is affected by the cellular level of superoxide dismutase activity. J. Microbiol. Biotechnol. 17, 1399–1402.

    CAS  PubMed  Google Scholar 

  • Lee, J.H., M.W. Kim, B.S. Kim, S.M. Kim, B.C. Lee, T.S. Kim, and S.H. Choi. 2007. Identification and characterization of the Vibrio vulnificus rtxA essential for cytotoxicity in vitro and virulence in mice. J. Microbiol. 45, 146–152.

    CAS  PubMed  Google Scholar 

  • Linkous, D.A. and J.D. Oliver. 1999. Pathogenesis of Vibrio vulnificus. FEMS Microbiol. Lett. 174, 207–214.

    Article  CAS  PubMed  Google Scholar 

  • Master, S.S., B. Springer, P. Sander, E.C. Boettger, V. Deretic, and G.S. Timmins. 2002. Oxidative stress response genes in Mycobacterium tuberculosis: role of ahpC1 in resistance to peroxynitrite and stage-specific survival in macrophages. Microbiology 148, 3139–3144.

    CAS  PubMed  Google Scholar 

  • Mekalanos, J.J. 1992. Environmental signals controlling expression of virulence determinants in bacteria. J. Bacteriol. 174, 1–7.

    CAS  PubMed  Google Scholar 

  • Miller, R.A. and B.E. Britigan. 1997. Role of oxidants in microbial pathophysiology. Clin. Microbiol. Rev. 10, 1–18.

    CAS  PubMed  Google Scholar 

  • Miller, V.L. and J.J. Mekalanos. 1988. A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J. Bacteriol. 170, 2575–2583.

    CAS  PubMed  Google Scholar 

  • Milton, D.L., R. O’Toole, P. Horstedt, and H. Wolf-Watz. 1996. Flagellin A is essential for the virulence of Vibrio anguillarum. J. Bacteriol. 178, 1310–1319.

    CAS  PubMed  Google Scholar 

  • Oh, M.H., S.M. Lee, D.H. Lee, and S.H. Choi. 2009. Regulation of the Vibrio vulnificus hupA gene by temperature alteration and cyclic AMP receptor protein and evaluation of its role in virulence. Infect. Immun. 77, 1208–1215.

    Article  CAS  PubMed  Google Scholar 

  • Oka, A., H. Sugisaki, and M. Takanami. 1981. Nucleotide sequence of the kanamycin resistance transposon Tn903. J. Mol. Biol. 147, 217–226.

    Article  CAS  PubMed  Google Scholar 

  • Park, K.J., M.J. Kang, S.H. Kim, H.J. Lee, J.K. Lim, S.H. Choi, S.J. Park, and K.H. Lee. 2004. Isolation and characterization of rpoS in a pathogenic bacterium, Vibrio vulnificus: Role of σS in survival of exponential phase cells under oxidative stress. J. Bacteriol. 186, 3304–3312.

    Article  CAS  PubMed  Google Scholar 

  • Park, N.Y., J.H. Lee, M.W. Kim, H.G. Jeong, B.C. Lee, T.S. Kim, and S.H. Choi. 2006. Identificatioin of Vibrio vulnificus wbpP gene and evaluation of its role in virulence. Infect. Immun. 74, 721–728.

    Article  CAS  PubMed  Google Scholar 

  • Poole, L.B. 2003. Bacterial peroxiredoxins, p. 81–101. In H.J. Forman, J.M. Fukuto, and M. Torres (eds.), Signal transduction by reactive oxygen and nitrogen species: Pathways and chemical principles, Kluwer Academic, MA, USA.

    Google Scholar 

  • Poole, L.B. 2005. Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. Arch. Biochem. Biophys. 433, 240–254.

    Article  CAS  PubMed  Google Scholar 

  • Reed, L.J. and H. Muench. 1938. A simple method of estimating fifty percent endpoints. Am. J. Hyg. 27, 439–497.

    Google Scholar 

  • Shinoda, S., S. Miyoshi, H. Yamanaka, and N. Miyoshi-Nakahara. 1985. Some properties of Vibrio vulnificus hemolysin. Microbiol. Immunol. 29, 583–590.

    CAS  PubMed  Google Scholar 

  • Storz, G. and M. Zheng. 2000. Oxidative stress, p. 47–59. In G. Storz and R. Hennge-Aronis (eds.), Bacterial stress responses. American Society for Microbiology, Washington, D.C., USA.

    Google Scholar 

  • Strom, M. and R.N. Paranjpye. 2000. Epidemiology and pathogenesis of Vibrio vulnificus. Microbes Infect. 2, 177–188.

    Article  CAS  PubMed  Google Scholar 

  • Wang, G., A.A. Olczak, J.P. Walton, and R.J. Maier. 2005. Contribution of the Helicobacter pylori thiol peroxidase bacterioferritin comigratory protein to oxidative stress resistance and host colonization. Infect. Immun. 73, 378–384.

    Article  CAS  PubMed  Google Scholar 

  • Wood, M.J., E.C. Andrade, and G. Storz. 2003. The redox domain of the Yap1p transcription factor contains two disulfide bonds. Biochemistry 42, 11982–11991.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, M., X. Wang, B. Doan, K.A. Lewis, T.D. Schneider, and G. Storz. 2001. Computation-directed identification of OxyR DNA binding sites in Escherichia coli. J. Bacteriol. 183, 4571–4579.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Ho Choi.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baek, W.K., Lee, H.S., Oh, M.H. et al. Identification of the Vibrio vulnificus ahpCl gene and its influence on survival under oxidative stress and virulence. J Microbiol. 47, 624–632 (2009). https://doi.org/10.1007/s12275-009-0130-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-009-0130-x

Keywords

Navigation