Skip to main content
Log in

Expression and regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase genes in Mycobacterium sp. strain JC1 DSM 3803

  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) is the key enzyme of the Calvin reductive pentose phosphate cycle. Two sets of structural genes (cbbLS-1 and -2) for form I RubisCO have been previously identified in the Mycobacterium sp. strain JC1, which is able to grow on carbon monoxide (CO) or methanol as sole sources of carbon and energy. Northern blot and reverse transcriptase PCR showed that the cbbLS-1 and -2 genes are expressed in cells grown on either carbon monoxide (CO) or methanol, but not in cells grown in nutrient broth. A promoter assay revealed that the cbbLS-2 promoter has a higher activity than the cbbLS-1 promoter in both CO- and methanol-grown cells, and that the activities of both promoters were higher in CO-grown cells than in methanol-grown cells. A gel mobility shift assay and footprinting assays showed that CbbR expressed in Escherichia coli from a cbbR gene, which is located downstream of cbbLS-1 and transcribed in the same orientation as that of the cbbLS genes, specifically bound to the promoter regions of the cbbLS-1 and -2 genes containing inverted repeat sequence. A DNase I footprinting assay revealed that CbbR protected positions −59 to −3 and −119 to −78 of the cbbLS-1 and -2 promoters, respectively. Overexpression of CbbR induced the transcription of RubisCO genes in Mycobacterium sp. strain JC1 grown in nutrient broth. Our results suggest that the CbbR product from a single cbbR gene may positively regulate two cbbLS operons in the Mycobacterium sp. strain JC1 as is the case for Rhodobacter sphaeroides and Cupriavidus necator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashida, H., Y. Saito, C. Kojima, K. Kobayashi, N. Ogasawara, and A. Yokota. 2003. A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO. Science 302, 286–290.

    Article  PubMed  CAS  Google Scholar 

  • Cho, J.W., H.S. Yim, and Y.M. Kim. 1985. Acinetobacter isolate growing with carbon monoxide. Kor. J. Microbiol. 23, 1–8.

    CAS  Google Scholar 

  • Dangel, A.W., J.L. Gibson, A.P. Janssen, and F.R. Tabita. 2005. Residues that influence in vivo and in vitro CbbR function in Rhodobacter sphaeroides and identification of a specific region critical for co-inducer recognition. Mol. Microbiol. 57, 1397–1414.

    Article  PubMed  CAS  Google Scholar 

  • Delwiche, C.F. and J.D. Palmer. 1996. Rampant horizontal transfer and duplication of Rubisco genes in eubacteria and plastids. Mol. Biol. Evol. 13, 873–882.

    PubMed  CAS  Google Scholar 

  • Dhandayuthapani, S., M. Mudd, and V. Deretic. 1997. Interactions of OxyR with the promoter region of the oxyR and ahpC genes from Mycobacterium leprae and Mycobacterium tuberculosis. J. Bacteriol. 179, 2401–2409.

    PubMed  CAS  Google Scholar 

  • Dubbs, J.M., T.H. Bird, C.E. Bauer, and F.R. Tabita. 2000. Interaction of CbbR and RegA* transcription regulators with the Rhodobacter sphaeroides cbb I promoter-operator region. J. Biol. Chem. 275, 19224–19230.

    Article  PubMed  CAS  Google Scholar 

  • Dubbs, P., J.M. Dubbs, and F.R. Tabita. 2004. Effector-mediated interaction of CbbRI and CbbRII regulators with target sequences in Rhodobacter capsulatus. J. Bacteriol. 186, 8026–8035.

    Article  PubMed  CAS  Google Scholar 

  • Dubbs, J.M. and F.R. Tabita. 2003. Interactions of the cbb II promoter-operator region with CbbR and RegA (PrrA) regulators indicate distinct mechanisms to control expression of the two cbb operons of Rhodobacter sphaeroides. J. Biol. Chem. 278, 16443–16450.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, R.J. 1979. The most abundant protein in the world. Trends Biochem. Sci. 4, 241–244.

    Article  CAS  Google Scholar 

  • English, R.S., C.A. Williams, S.C. Lorbach, and J.M. Shively. 1992. Two forms of ribulose-1,5-bisphosphate carboxylase/oxygenase from Thiobacillus denitrificans. FEMS Microbiol. Lett. 94, 111–120.

    Article  CAS  Google Scholar 

  • Finn, M.W. and F.R. Tabita. 2003. Synthesis of catalytically active form III ribulose 1,5-bisphosphate carboxylase/oxygenase in archaea. J. Bacteriol. 185, 3049–3059.

    Article  PubMed  CAS  Google Scholar 

  • Frias, J.E., E. Flores, and A. Herrero. 2000. Activation of the Anabaena nir operon promoter requires both NtcA (CAP family) and NtcB (LysR family) transcription factors. Mol. Microbiol. 38, 613–625.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, J.L., D.L. Falcone, and F.R. Tabita. 1991. Nucleotide sequence, transcriptional analysis, and expression of genes encoded within the form I CO2 fixation operon of Rhodobacter sphaeroides. J. Biol. Chem. 266, 14646–14653.

    PubMed  CAS  Google Scholar 

  • Gibson, J.L. and F.R. Tabita. 1977a. Different molecular forms of D-ribulose-1,5-bisphosphate carboxylase from Rhodopseudomonas sphaeroides. J. Biol. Chem. 252, 943–949.

    PubMed  CAS  Google Scholar 

  • Gibson, J.L. and F.R. Tabita. 1977b. Isolation and preliminary characterization of two forms of ribulose 1,5-biphosphate carboxylase from Rhodopseudomonas capsulata. J. Bacteriol. 132, 818–823.

    PubMed  CAS  Google Scholar 

  • Gibson, J.L. and F.R. Tabita. 1993. Nucleotide sequence and functional analysis of cbbR, a positive regulator of the Calvin cycle operons of Rhodobacter sphaeroides. J. Bacteriol. 175, 5778–5784.

    PubMed  CAS  Google Scholar 

  • Gomez, M. and I. Smith. 2000. Determinants of mycobacterial gene expression, p. 111–129. In G.F. Hatfull and J.W.R. Jacobs (eds.), Molecular Genetics of Mycobacteria, American Society for Microbiology, Washington, D.C., USA.

    Google Scholar 

  • Heinhorst, S., S.H. Baker, D.R. Johnson, P.S. Davies, G.C. Cannon, and J.M. Shively. 2002. Two copies of form I RuBisCO genes in Acidithiobacillus ferrooxidans ATCC 23270. Curr. Microbiol. 45, 115–117.

    Article  PubMed  CAS  Google Scholar 

  • Howard, N.S., J.E. Gomez, C. Ko, and W.R. Bishai. 1995. Color selection with a hygromycin-resistance-based Escherichia coli-mycobacterial shuttle vector. Gene 166, 181–182.

    Article  PubMed  CAS  Google Scholar 

  • Jouanneau, Y. and F.R. Tabita. 1986. Independent regulation of synthesis of form I and form II ribulose bisphosphate carboxylase-oxygenase in Rhodopseudomonas sphaeroides. J. Bacteriol. 165, 620–624.

    PubMed  CAS  Google Scholar 

  • Kang, C.M., D.W. Abbott, S.T. Park, C.C. Dascher, L.C. Cantley, and R.N. Husson. 2005. The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes Dev. 19, 1692–1704.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y.M. and G.D. Hegeman. 1981. Purification and some properties of carbon monoxide dehydrogenase from Pseudomonas carboxydohydrogena. J. Bacteriol. 148, 904–911.

    PubMed  CAS  Google Scholar 

  • Kim, E.Y., Y.T. Ro, and Y.M. Kim. 1997. Purification and some properties of ribulose 1,5-bisphosphate carboxylases/oxygenases from Acinetobacter sp. strain JC1 and Hydrogenophaga pseudoflava. Mol. Cells 7, 380–388.

    PubMed  CAS  Google Scholar 

  • Kusano, T., T. Takeshima, C. Inoue, and K. Sugawara. 1991. Evidence for two sets of structural genes coding for ribulose bisphosphate carboxylase in Thiobacillus ferrooxidans. J. Bacteriol. 173, 7313–7323.

    PubMed  CAS  Google Scholar 

  • Kusian, B., R. Bednarski, M. Husemann, and B. Bowien. 1995. Characterization of the duplicate ribulose-1,5-bisphosphate carboxylase genes and cbb promoters of Alcaligenes eutrophus. J. Bacteriol. 177, 4442–4450.

    PubMed  CAS  Google Scholar 

  • Kusian, B. and B. Bowien. 1995. Operator binding of the CbbR protein, which activates the duplicate cbb CO2 assimilation operons of Alcaligenes eutrophus. J. Bacteriol. 177, 6568–6574.

    PubMed  CAS  Google Scholar 

  • Kusian, B. and B. Bowien. 1997. Organization and regulation of cbb CO2 assimilation genes in autotrophic bacteria. FEMS Microbiol. Rev. 21, 135–155.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Leblanc, B. and T. Moss. 1994. DNase I footprinting. Methods Mol. Biol. 30, 1–10.

    PubMed  CAS  Google Scholar 

  • Li, H., M.R. Sawaya, F.R. Tabita, and D. Eisenberg. 2005. Crystal structure of a RuBisCO-like protein from the green sulfur bacterium Chlorobium tepidum. Structure 13, 779–789.

    Article  PubMed  CAS  Google Scholar 

  • Maxam, A.M. and W. Gilbert. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65, 499–560.

    Article  PubMed  CAS  Google Scholar 

  • McFall, S.M., M.R. Parsek, and A.M. Chakrabarty. 1997. 2-Chloro-muconate and ClcR-mediated activation of the clcABD operon: In vitro transcriptional and DNase I footprint analyses. J. Bacteriol. 179, 3655–3663.

    PubMed  CAS  Google Scholar 

  • Paoli, G.C., N. Strom Morgan, F.R. Tabita, and J.M. Shively. 1995. Expression of the cbbLcbbS and cbbM genes and distinct organization of the cbb Calvin cycle structural genes of Rhodobacter capsulatus. Arch. Microbiol. 164, 396–405.

    PubMed  CAS  Google Scholar 

  • Park, S.W., E.H. Hwang, H.S. Jang, J.H. Lee, B.S. Kang, J.I. Oh, and Y.M. Kim. 2009. Presence of the duplicate genes encoding a phylogenetically new subgroup of form I ribulose 1,5-bisphosphate carboxylase/oxygenase in Mycobacterium sp. strain JC1 DSM 3803. Res. Microbiol. 160, 159–165.

    Article  PubMed  CAS  Google Scholar 

  • Park, S.W., E.H. Hwang, H. Park, J.A. Kim, J. Heo, K.H. Lee, T. Song, E. Kim, Y.T. Ro, S.W. Kim, and Y.M. Kim. 2003. Growth of mycobacteria on carbon monoxide and methanol. J. Bacteriol. 185, 142–147.

    Article  PubMed  CAS  Google Scholar 

  • Parsek, M.R., S.M. McFall, D.L. Shinabarger, and A.M. Chakrabarty. 1994. Interaction of two LysR-type regulatory proteins CatR and ClcR with heterologous promoters: functional and evolutionary implications. Proc. Natl. Acad. Set USA 91, 12393–12397.

    Article  CAS  Google Scholar 

  • Ro, Y.T., J.G. Seo, J. Lee, D. Kim, I.K. Chung, T.U. Kim, and Y.M. Kim. 1997. Growth on methanol of a carboxydobacterium, Acinetobacter sp. strain JC1 DSM 3803. J. Microbiol. 35, 30–39.

    CAS  Google Scholar 

  • Sambrook, J., E.F. Fristh, and T. Manniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd. ed. Cold Spring Harbor Laboratory, New York, N.Y., USA.

    Google Scholar 

  • Schell, M.A. 1993. Molecular biology of the LysR family of transcriptional regulators. Annu. Rev. Microbiol. 47, 597–626.

    Article  PubMed  CAS  Google Scholar 

  • Seo, J.G., S.W. Park, H. Park, S.Y. Kim, Y.T. Ro, E. Kim, J.W. Cho, and Y.M. Kim. 2007. Cloning, characterization and expression of a gene encoding dihydroxyacetone synthase in Mycobacterium sp. strain JC1 DSM 3803. Microbiology 153, 4174–4182.

    Article  PubMed  CAS  Google Scholar 

  • Sherman, D.R., M. Voskuil, D. Schnappinger, R. Liao, M.I. Harrell, and G.K. Schoolnik. 2001. Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding α-crystallin. Proc. Natl. Acad. Sci. USA 98, 7534–7539.

    Article  PubMed  CAS  Google Scholar 

  • Shively, J.M., W. Devore, and L. Stratford. 1986. Molecular evolution of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). FEMS Microbiol. Lett. 37, 251–257.

    Article  CAS  Google Scholar 

  • Smith, S.A. and F.R. Tabita. 2002. Up-regulated expression of the cbb I and cbb II operons during photoheterotrophic growth of a ribulose 1,5-bisphosphate carboxylase-oxygenase deletion mutant of Rhodobacter sphaeroides. J. Bacteriol. 184, 6721–6724.

    Article  PubMed  CAS  Google Scholar 

  • Song, T., H. Lee, Y.H. Park, E. Kim, Y.T. Ro, S.W. Kim, and Y.M. Kim. 2002. Reclassification of a carboxydobacterium, Acinetobacter sp. strain JC1 DSM 3803, as Mycobacterium sp. strain JC1 DSM 3803. J. Microbiol. 40, 237–240.

    CAS  Google Scholar 

  • Stoner, M.T. and J.M. Shively. 1993. Cloning and expression of the D-ribulose-1,5-bis-phosphate carboxylase/oxygenase form II gene from Thiobacillus intermedius in Escherichia coli. FEMS Microbiol. Lett. 107, 287–292.

    PubMed  CAS  Google Scholar 

  • Tabita, F.R., T.E. Hanson, H.Y. Li, S. Satagopan, J. Singh, and S. Chan. 2007. Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiol. Mol. Biol. Rev. 71, 576–599.

    Article  PubMed  CAS  Google Scholar 

  • Tourova, T.P., E.M. Spiridonova, I.A. Berg, B.B. Kuznetsov, and D.Y. Sorokin. 2006. Occurrence, phylogeny and evolution of ribulose-1,5-bisphosphate carboxylase/oxygenase genes in obligately chemolithoautotrophic sulfur-oxidizing bacteria of the genera Thiomicrospira and Thioalkalimicrobium. Microbiology 152, 2159–2169.

    Article  PubMed  CAS  Google Scholar 

  • Toyoda, K., Y. Yoshizawa, H. Arai, M. Ishii, and Y. Igarashi. 2005. The role of two CbbRs in the transcriptional regulation of three ribulose-1,5-bisphosphate carboxylase/oxygenase genes in Hydrogenovibrio marinus strain MH-110. Microbiology 151, 3615–3625.

    Article  PubMed  CAS  Google Scholar 

  • Uchino, Y. and A. Yokota. 2003. “Green-like” and “red-like” RubisCO cbbL genes in Rhodobacter azotoformans. Mol. Biol. Evol. 20, 821–830.

    Article  PubMed  CAS  Google Scholar 

  • Van Keulen, G., L. Girbal, E.R.E. Van Den Bergh, L. Dijkhuizen, and W.G. Meijer. 1998. The LysR-type transcriptional regulator CbbR controlling autotrophic CO2 fixation by Xanthobacter flavus is an NADPH sensor. J. Bacteriol. 180, 1411–1417.

    PubMed  Google Scholar 

  • Van Keulen, G., A. Ridder, L. Dijkhuizen, and W.G. Meijer. 2003. Analysis of DNA binding and transcriptional activation by the LysR-type transcriptional regulator CbbR of Xanthobacter flavus. J. Bacteriol. 185, 1245–1252.

    Article  PubMed  CAS  Google Scholar 

  • Viale, A.M., H. Kobayashi, and T. Akazawa. 1989. Expressed genes for plant-type ribulose 1,5-bisphosphate carboxylase/oxygenase in the photosynthetic bacterium Chromatium vinosum, which possesses two complete sets of the genes. J. Bacteriol. 171, 2391–2400.

    PubMed  CAS  Google Scholar 

  • Vichivanives, P., T.H. Bird, C.E. Bauer, and F.R. Tabita. 2000. Multiple regulators and their interactions in vivo and in vitro with the cbb regulons of Rhodobacter capsulatus. J. Mol. Biol. 300, 1079–1099.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., J.D. Helmann, and S.C. Winans. 1992. The A. tumefaciens transcriptional activator OccR causes a bend at a target promoter, which is partially relaxed by a plant tumor metabolite. Cell 69, 659–667.

    Article  PubMed  CAS  Google Scholar 

  • Watson, G.M.F. and F.R. Tabita. 1997. Microbial ribulose 1,5-bis-phosphate carboxylase/oxygenase: A molecule for phylogenetic and enzymological investigation. FEMS Microbiol. Lett. 146, 13–22.

    Article  PubMed  CAS  Google Scholar 

  • Weber, K. and M. Osborn. 1969. The reliability of molecular weight determination by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem. 244, 4406–4412.

    PubMed  CAS  Google Scholar 

  • Yaguchi, T., S.Y. Chung, Y. Igarashi, and T. Kodama. 1994. Cloning and sequence of the L2 form of RubisCO from a marine obligately autotrophic hydrogen-oxidizing bacterium, Hydrogenovibrio marinus strain MH-110. Biosci. Biotechnol. Biochem. 58, 1733–1737.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Min Kim.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.H., Park, D.O., Park, S.W. et al. Expression and regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase genes in Mycobacterium sp. strain JC1 DSM 3803. J Microbiol. 47, 297–307 (2009). https://doi.org/10.1007/s12275-008-0210-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-008-0210-3

Keywords

Navigation