Skip to main content
Log in

Identification and characterization of a class III chitin synthase gene of Moniliophthora perniciosa, the fungus that causes witches’ broom disease of cacao

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Chitin synthase (CHS) is a glucosyltransferase that converts UDP-N-acetylglucosamine into chitin, one of the main components of fungal cell wall. Class III chitin synthases act directly in the formation of the cell wall. They catalyze the conversion of the immediate precursor of chitin and are responsible for the majority of chitin synthesis in fungi. As such, they are highly specific molecular targets for drugs that can inhibit the growth and development of fungal pathogens. In this work, we have identified and characterized a chitin synthase gene of Moniliophthora perniciosa (Mopchs) by primer walking. The complete gene sequence is 3,443 bp, interrupted by 13 small introns, and comprises a cDNA with an ORF with 2,739 bp, whose terminal region was experimentally determined, encoding a protein with 913 aa that harbors all the motifs and domains typically found in class III chitin synthases. This is the first report on the characterization of a chitin synthase gene, its mature transcription product, and its putative protein in basidioma and secondary mycelium stages of M. perniciosa, a basidiomycotan fungus that causes witches’ broom disease of cacao.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aime, M.C. and W. Phillips-Mora. 2005. The causal agents of witches broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae. Mycologia 97, 1012–1022.

    Article  PubMed  CAS  Google Scholar 

  • Altschul, S.F., T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  • Bago, B., H. Chamberland, A. Goulet, H. Vierheilig, J.G. Lafontaine, and E. Piche. 1996. Effect of nikkomycin Z, a chitin synthase inhibitor, on hyphal growth and cell wall structure of two arbuscular-mycorrhizal fungi. Protoplasma 192, 80–92.

    Article  CAS  Google Scholar 

  • Behr, J.B. 2003. Chitin synthase as an antifungal target: recent advances. Curr. Med. Chem. 2, 173–189.

    CAS  Google Scholar 

  • Birney, E., M. Clamp, and R. Durbin. 2004. GeneWise and Genome-Wise. Genome Res. 14, 988–995.

    Article  PubMed  CAS  Google Scholar 

  • Birren, B., E. Lander, J. Galagan, C. Nusbaum, K. Devon, L.J. Ma, D. Jaffe, J. Butler, P. Alvarez, S. Gnerre, M. Grabherr, M. Kleber, E. Mauceli, W. Brockman, S. Rounsley, S. Young, K. LaButti, V. Pushparaj, D. DeCaprio, M. Crawford, et al. 2003. Annotation of the Coprinopsis cinerea genome. The Broad Institute Genome Sequencing Platform. (http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&id=116504282) and (http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=116501858) Accessed in: 26 Jul 2007.

  • Bowman, S.M. and S.J. Free. 2006. The structure and synthesis of the fungal cell wall. Bioessays 28, 799–808.

    Article  PubMed  Google Scholar 

  • Broeker, K., S. Fehser, and B.M. Moerschbacher. 2006. Survey and expression analysis of five new chitin synthase genes in the biotrophic rust fungus Puccinia graminis. Curr. Genet. 50, 295–305.

    Article  PubMed  CAS  Google Scholar 

  • Bulawa, C.E., M. Slater, E. Cabib, J. Au-Young, A. Sburlati, W.L. Adair, and P.W. Robbins. 1986. The S. cerevisiae structural gene for chitin synthase is not required for chitin synthesis in vivo. Cell 46, 213–225.

    Article  PubMed  CAS  Google Scholar 

  • Burland, T.G. 2000. DNASTAR’s lasergene sequence analysis software. Methods Mol. Biol. 132, 71–91.

    PubMed  CAS  Google Scholar 

  • Choquer, M., M. Boccara, I.R. Goncalves, M.C. Soulie, and A. Vidal-Cros. 2004. Survey of the Botrytis cinerea chitin synthase multigenic family through the analysis of six euascomycetes genomes. Eur. J. Biochem. 271, 2153–2164.

    Article  PubMed  CAS  Google Scholar 

  • Doyle, J.J. and J.L. Doyle. 1987. A rapid DNA isolation procedure for small amounts of fresh leaf tissue. Phytochem. Bull. 19, 11–15.

    Google Scholar 

  • Durán, A., B. Bowers, and E. Cabib. 1975. Chitin synthetase zymogen is attached to the yeast plasma membrane. Proc. Natl. Acad. Set USA 72, 3952–3955.

    Article  Google Scholar 

  • Fayyad, U.M. 1996. Advances in Knowledge Discovery and Data Mining. AAI Press, Cambridge, UK.

    Google Scholar 

  • Felsenstein, J. 2005. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.

    Google Scholar 

  • Formighieri, E.F., R.A. Tiburcio, E.D. Armas, F.J. Medrano, H. Shimo, N. Carels, A. Góes-Neto, C. Cotomacci, M.F. Carazzolle, N. Sardinha-Pinto, J. Rincones, L. Digiampietri, D.M. Carraro, A.M. Azeredo-Espin, S.F. Reis, A.C. Deckmann, K. Gramacho, M.S. Gonçalves, J.P. Moura Neto, L.V. Barbosa, et al. 2008. The mitochondrial genome of the phytopathogenic basidiomycete Moniliophthora perniciosa is 109 kb in size and contains a stable integrated plasmid. Mycol. Res. 112, 1136–1152.

    Article  PubMed  CAS  Google Scholar 

  • Fung, E., R.W. Hyman, D. Rowley, D. Bruno, M. Miranda, M. Fukushima, B.L. Wickes, J. Fu, and R.W. Davis. 2004. Cryptococcus neoformans serotype D sequencing. (http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&id=50257918). Accessed in: 26 Jul 2007.

  • Glaser, L. and D.H. Brown. 1957. The synthesis of chitin in cell-free extracts of Neurospora crassa. J. Biol. Chem. 228, 729–742.

    PubMed  CAS  Google Scholar 

  • Green, P. 2007. Phrap Documentation: Algorithms. Phred/Phrap/Consed System Home Page. (http://www.phrap.org) Accessed in: 2 May 2007.

  • Griffith, G.W., J. Nicholson, A. Nenninger, and R.N. Birch. 2003. Witches’ brooms and frosty pods: two major pathogens of cacao. New Zeal. J. Bot. 41, 423–435.

    Google Scholar 

  • James, T.Y., F. Kauff, C.L. Schoch, P.B. Matheny, V. Hofstetter, C.J. Cox, G. Celio, C. Gueidan, E. Fraker, J. Miadlikowska, H.T. Lumbsch, A. Rauhut, V. Reeb, A.E. Arnold, A. Amtoft, J.E. Stajich, K. Hosaka, G.H. Sung, D. Johnson, B. O’Rourke, et al. 2006. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443, 818–822.

    Article  PubMed  CAS  Google Scholar 

  • Kamper, J., R. Kahmann, M. Bolker, L.J. Ma, T. Brefort, B.J. Saville, F. Banuett, J.W. Kronstad, S.E. Gold, O. Muller, M.H. Perlin, H.A. Wosten, R. De Vries, J. Ruiz-Herrera, C.G. Reynaga-Pena, K. Snetselaar, M. Mccann, J. Perez-Martin, M. Feldbrugge, C.W. Basse, et al. 2006. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444, 97–101.

    Article  PubMed  Google Scholar 

  • Krogh, A., B. Larsson, G. von Heijne, and E.L. Sonnhammer. 2001. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305, 567–580.

    Article  PubMed  CAS  Google Scholar 

  • Latgé, J.P. 2007. The cell wall: A carbohydrate armour for the fungal cell. Mol. Microbiol. 66, 279–290.

    Article  PubMed  Google Scholar 

  • Lewis, D.H. 1991. Fungi and sugars — a suite of interactions. Mycol. Res. 95, 897–904.

    Article  Google Scholar 

  • Loftus, B.J., E. Fung, P. Roncaglia, D. Rowley, P. Amedeo, D. Bruno, J. Vamathevan, M. Miranda, I.J. Anderson, J.A. Fraser, J.E. Allen, I.E. Bosdet, M.R. Brent, R. Chiu, T.L. Doering, M.J. Donlin, C.A. D’souza, D.S. Fox, V. Grinberg, J. Fu, et al. 2005. The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 307, 1321–1324.

    Article  PubMed  Google Scholar 

  • Lopes, M.A., D.S. Gomes, M.G.B. Koblitz, C.P. Pirovani, J.C. de M. Cascardo, A. Góes-Neto, and F. Micheli. 2008. Use of response surface methodology to examine chitinase regulation in the basidiomycete Moniliophthora perniciosa. Mycol Res. 112, 399–406.

    Article  PubMed  CAS  Google Scholar 

  • Merzendorfer, H. 2006. Insect chitin synthases: a review. J. Comp. Physiol. B. 176, 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Merzendorfer, H. and L. Zimoch. 2003. Chitin metabolism in insects: Structure, function and regulation of chitin synthases and chitinases. J. Exp. Biol. 206, 4393–4412.

    Article  PubMed  CAS  Google Scholar 

  • Mondego, J.M., M.F. Carazzolle, G.G. Costa, E.F. Formighieri, L.P. Parizzi, J. Rincones, C. Cotomacci, D.M. Carraro, A.F. Cunha, H. Carrer, R.O. Vidal, R.C. Estrela, O. García, D.P. Thomazella, B.V. de Oliveira, A.B. Pires, M.C. Rio, M.R. Araújo, M.H. de Moraes, L.A. Castro, et al. 2008. A genome survey of Moniliophthora perniciosa gives new insights into witches’ broom disease of cacao. BMC Genomics 9, 548.

    Article  PubMed  Google Scholar 

  • Mulder, N. and R. Apweiler. 2007. InterPro and InterProScan: Tools for protein sequence classification and comparison. Methods Mol. Biol. 396, 59–70.

    Article  PubMed  CAS  Google Scholar 

  • Nagahashi, S., M. Sudoh, N. Ono, R. Sawada, E. Yamaguchi, Y. Uchida, T. Mio, M. Takagi, M. Arisawa, and H. Yamada-Okabe. 1995. Characterization of chitin synthase 2 of Saccharomyces cerevisiae. Implication of two highly conserved domains as possible catalytic sites. J. Biol. Chem. 270, 13961–13967.

    Article  PubMed  CAS  Google Scholar 

  • Nishihara, M., A. Watanabe, and Y. Asada. 2007. Isolation, characterization, and expression analysis of a class IV chitin synthase gene from the edible basidiomycetous mushroom Pleurotus ostreatus. Mycoscience 48, 176–181.

    Article  CAS  Google Scholar 

  • Notredame, C., D. Higgins, and J. Heringa. 2000. T-Coffee: A novel method for multiple sequence alignments. J. Mol. Biol. 302, 205–217.

    Article  PubMed  CAS  Google Scholar 

  • Page, R.D.M. 1996. Treeview: An application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12, 357–358.

    PubMed  CAS  Google Scholar 

  • Parker, J.D., P.S. Rabinovitch, and G.C. Burmer. 1991. Targeted gene walking polymerase chain reaction. Nucleic Acids Res. 19, 3055–3060.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, W.R. 1990. Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol. 183, 63–98.

    Article  PubMed  CAS  Google Scholar 

  • Pirovani, C.P., B.T. da Hora-Júnior, B.M. Oliveira, M.A. Lopes, C.V. Dias, S.H. Cruz da, A. Schriefer, J.C. de M. Cascardo, G.A.G. Pereira, and A. Góes-Neto. 2005. Knowledge discovery in genome database: the chitin metabolic pathway in Crinipellis perniciosa (Stahel) Singer, vol. 1, p. 122–139. In R. Mondaini (ed.), Proceedings of IV Brazilian Symposium on Mathematical and Computational Biology / I International Symposium on Mathematical and Computational Biology. E-Papers Serviços Editoriais LTDA, Rio de Janeiro, Brazil.

  • Rincones, J., G.D. Mazotti, G.W. Griffith, A. Pomela, A. Figueira, G.A. Leal, Jr., M.V. Queiroz, J.F. Pereira, R.A. Azevedo, G.A.G. Pereira, and L.W. Meinhardt. 2006. Genetic variability and chromosome-length polymorphisms of the witches’ broom pathogen Crinipellis perniciosa from various plant hosts in South America. Mycol. Res. 110, 821–832.

    Article  PubMed  CAS  Google Scholar 

  • Roncero, C. 2002. The genetic complexity of chitin synthesis in fungi. Curr. Genet. 41, 367–378.

    Article  PubMed  CAS  Google Scholar 

  • Ronquist, F.R. and J.P. Huelsenbeck. 2003. MrBayse 3: Bayesian phylogenetic, inference under mixed models. Bioinformatics 19, 1572–1574.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Herrera, J., J.M. González-Prieto, and R. Ruiz-Medrano. 2002. Evolution and phylogenetic relationships of chitin synthases from yeast and fungi. FEMS Yeast Res. 1, 247–256.

    Article  PubMed  CAS  Google Scholar 

  • Smale, S.T. and J.T. Kadonaga. 2003. The RNA polymerase II core promoter. Annu. Rev. Biochem. 72, 449–479.

    Article  PubMed  CAS  Google Scholar 

  • Sreenivasaprasad, S., K.S. Burton, and D.A. Wood. 2000. Cloning and characterisation of a chitin synthase gene cDNA from the cultivated mushroom Agaricus bisporus and its expression during morphogenesis. FEMS Microbiol. Lett. 189, 73–77.

    PubMed  CAS  Google Scholar 

  • Stanke, M. and S. Waack. 2003. Gene prediction with a Hidden-Markov Model and a new intron submodel. Bioinformatics 19,Suppl. 2, ii215–ii225.

    PubMed  Google Scholar 

  • Swofford, D.L. 2002. PAUP phylogenetic analysis using parsimony and other methods, version 4.0b 10. Sinauer, Sunderland.

    Google Scholar 

  • Wang, K., D.W. Ussery, and S. Brunak. 2008. Analysis and prediction of gene splice sites in four Aspergillus genomes. Fungal Genet. Biol., in press.

  • Weber, I., D. Assmann, E. Thines, and G. Steinberg. 2006. Polar localizing class V myosin chitin synthases are essential during early plant infection in the plant pathogenic fungus Ustilago maydis. Plant Cell 18, 225–242.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aristóteles Góes-Neto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souza, C.S., Oliveira, B.M., Costa, G.G.L. et al. Identification and characterization of a class III chitin synthase gene of Moniliophthora perniciosa, the fungus that causes witches’ broom disease of cacao. J Microbiol. 47, 431–440 (2009). https://doi.org/10.1007/s12275-008-0166-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-008-0166-3

Keywords

Navigation