Skip to main content
Log in

The role and regulation of Trxl, a cytosolic thioredoxin in Schizosaccharomyces pombe

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

The genome of fission yeast Schizosaccharomyces pombe harbors two genes for thioredoxins, trx1 + and trx2 +, which encode cytosolic and mitochondrial thioredoxins, respectively. The Δtrx1 mutant was found sensitive to diverse external stressors such as various oxidants, heat, and salt, whereas Δtrx2 mutant was not sensitive except to paraquat, a superoxide generator. Both Δtrx1 and Δtrx2 mutants were more resistant to diamide, a thiol-specific oxidant, than the wild type. The trx1 + gene expression was induced by H2O2 and menadione, being mediated through a stress-responsive transcription factor Papl. In Δtrx1 cells, the basal expression of Pap1-regulated genes were elevated, suggesting a role for Trxl as a reducer for oxidized (activated) Papl. The Δtrx1 mutant exhibited cysteine auxotrophy, which can be overcome by adding sulfite. This suggests that Trxl serves as a primary electron donor for 3′-phosphoadenosine-5′-phosphosulfate (PAPS) reductase and thus is an essential protein for sulfur assimilation in S. pombe. These results suggest that, in contrast to Trx2 whose role is more confined to mitochondrial functions, Trxl plays a major role in protecting S. pombe against various stressful conditions and enables proper sulfur metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfa, C., P. Fantes, J. Hyams, M. Mcleod, and E. Warbrick. 1993. Experiments with fission yeast: a laboratory course manual. Cold Spring Harbor Laboratory Press, New York, N.Y., USA.

    Google Scholar 

  • Bozonet, S., V. Findlay, A. Day, J. Cameron, E. Veal, and B. Morgan. 2005. Oxidation of a eukaryotic 2-cys proxiredoxin is a molecular switch controlling the transcriptional response to increasing levels of hydrogen peroxide. J. Biol. Chem. 280, 23319–23327.

    Article  PubMed  CAS  Google Scholar 

  • Carmel-Harel, O. and G. Storz. 2000. Roles of the glutathione-and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu. Rev. Microbiol. 54, 439–461.

    Article  PubMed  CAS  Google Scholar 

  • Delaunay, A., D. Pflieger, M. Barrault, J. Vinh, and M.B. Toledano. 2002. A thiol peroxide is an H2O2 receptor and redox-transducer in gene activation. Cell 111, 471–481.

    Article  PubMed  CAS  Google Scholar 

  • Fujii, Y., T. Simizu, T. Toda, M. Yanagida, and T. Hakoshima. 2000. Structural basis for the diversity of DNA recognition by bZIP transcription factors. Nat. Struct. Biol. 7, 889–893.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, J.T. and B. Demple. 1986. Glutathione in Escherichia coli is dispensable for resistance to H2O2 and gamma radiation. J. Bacteriol. 168, 1026–1029.

    PubMed  CAS  Google Scholar 

  • Herrero, E. and J. Ros. 2002. Glutaredoxins and oxidative stress defense in yeast. Methods Enzymol. 348, 136–146.

    Article  PubMed  CAS  Google Scholar 

  • Hirota, K., M. Murata, Y. Sachi, H. Nakamura, J. Takeuchi, K. Mori, and J. Yodoi. 1999. Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-κB. J. Biol. Chem. 274, 27891–27897.

    Article  PubMed  CAS  Google Scholar 

  • Holmgren, A. 1984. Enzymatic reduction-oxidation of protein disulfides by thioredoxin. Methods Enzymol. 107, 295–300.

    Article  PubMed  CAS  Google Scholar 

  • Izawa, S., K. Maeda, K. Sugiyama, J. Mano, and Y. Inoue. 1999. Thioredoxin deficiency causes the constitutive activation of Yap1, an AP-1-like transcription factor in Saccharomyces cerevisiae. J. Biol. Chem. 274, 28459–28465.

    Article  PubMed  CAS  Google Scholar 

  • Jara, M., A.P. Vivancos, I.A. Calvo, A. Moldon, M. Sanso, and E. Hidalgo. 2007. The peroxiredoxin Tpx1 is essential as a H2O2 scavenger during aerobic growth in fission yeast. Mol. Biol. Cell. 18, 2288–2295.

    Article  PubMed  CAS  Google Scholar 

  • Kang, H.J., S.M. Hong, B.C. Kim, K. Kim, E.H. Park, and C.J. Lim. 2006. Transcriptional analysis and Pap1-dependence of the unique gene encoding thioredoxin reductase from fission yeast. J. Microbiol. 44, 35–41.

    PubMed  CAS  Google Scholar 

  • Kim, S.J., E.M. Jung, H.J. Jung, Y.S. Song, E.H. Park, and C.J. Lim. 2007. Celluar functions and transcriptional regulation of a third thioredoxin from Schizosaccharomyces pombe. Can. J. Microbiol. 53, 775–783.

    Article  PubMed  CAS  Google Scholar 

  • Kudo, N., H. Taoka, T. Toda, M. Yoshida, and S. Horinouchi. 1999. A novel nuclear export signal sensitive to oxidative stress in the fission yeast transcription factor Pap1. J. Biol. Chem. 274, 15151–15158.

    Article  PubMed  CAS  Google Scholar 

  • Kuge, S., M. Arita, A. Murayama, K. Maeta, S. Izawa, Y. Inoue, and A. Nomoto. 2001. Regulation of the yeast Yap1p nuclear export signal is mediated by redox signal-induced reversible disulfide bond formation. Mol. Cell. Biol. 21, 6139–6150.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J., I.W. Dawes, and J.H. Roe. 1995. Adaptive response of Schizosaccharomyces pombe to hydrogen peroxide and menadione. Microbiology 141, 3127–3132.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J., I.W. Dawes, and J.H. Roe. 1997. Isolation, expression, and regulation of the pgr1 + gene encoding glutathione reductase absolutely required for the growth of Schizosaccharomyces pombe. J. Biol. Chem. 272, 23042–23049.

    Article  PubMed  CAS  Google Scholar 

  • Masutani, H. and J. Yodoi. 2002. Thioredoxin. Methods Enzymol. 347, 279–286.

    Article  PubMed  CAS  Google Scholar 

  • Moreno, S., A. Klar, and P. Nurse. 1991. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194, 795–823.

    Article  PubMed  CAS  Google Scholar 

  • Muller, E.G. 1996. A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth. Mol. Biol. Cell. 7, 1805–1813.

    PubMed  CAS  Google Scholar 

  • Nakagawa, C.W., K. Yamada, and N. Mutoh. 2000. Role of Atf1 and Pap1 in the induction of the catalase gene of fission yeast Schizosaccharomyces pombe. J. Biochem. (Tokyo) 127, 233–238.

    CAS  Google Scholar 

  • Okamoto, T., K. Asamitsu, and T. Tetsuka. 2002. Thioredoxin and mechanism of inflammatory response. Methods Enzymol. 347, 349–360.

    Article  PubMed  CAS  Google Scholar 

  • Pedrajas, J.R., E. Kosmidou, A. Miranda-Vizuete, J.A. Gustafsson, A.P. Wright, and G. Spyrou. 1999. Identification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae. J. Biol. Chem. 274, 6366–6373.

    Article  PubMed  CAS  Google Scholar 

  • Quinn, J., V.J. Findlay, K. Dawson, J.B.A. Miller, N. Jones, B.A. Morgan, and W.M. Toone. 2002. Distinct regulatory protein control the graded transcriptional response to increase H2O2 levels in fission yeast Schizosaccharomyces pombe. Mol. Biol. Cell 13, 805–816.

    Article  PubMed  CAS  Google Scholar 

  • Russel, M. and A. Holmgren. 1988. Construction and characterization of glutaredoxin-negative mutants of Escherichia coli. Proc. Natl. Acad. Sci. USA 85, 990–994.

    Article  PubMed  CAS  Google Scholar 

  • Russel, M., P. Model, and A. Holmgern. 1990. Thioredoxin or glutaredoxin in Escherichia coli is essential for sulfate reductase but not for deoxyribonucleotide synthesis. J. Bacteriol. 172, 1923–1929.

    PubMed  CAS  Google Scholar 

  • Saitoh, M., H. Nishitoh, M. Fujii, K. Takeda, K. Tobiume, Y. Sawada, M. Kawabata, K. Miyazono, and H. Ichijo. 1998. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 17, 2596–2606.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt, M.E., T.A. Brown, and B.L. Trumpower. 1990. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 18, 3091–3092.

    Article  PubMed  CAS  Google Scholar 

  • Song, J.Y. 2006. The role of glutathione reductase and thioredoxin in the fission yeast Schizosaccharomyces pombe. Ph. D. thesis, Seoul National University, Seoul, Korea.

    Google Scholar 

  • Song, J.Y., J. Cha, J. Lee, and J.H. Roe. 2006. Glutathione reductase and a mitochondrial thioredoxin play an overlapping role for maintaining iron-sulfur enzymes in fission yeast. Eukaryot. Cell. 5, 1857–1865.

    Article  PubMed  CAS  Google Scholar 

  • Toone, W.M. and N. Jones. 1998. Stress-activated signalling pathways in yeast. Genes Cells 3, 485–498.

    Article  PubMed  CAS  Google Scholar 

  • Tuggle, C.K. and J.A. Fuchs. 1985. Glutathione reductase is not required for maintenance of reduced glutathione in Escherichia coli K-12. J. Bacteriol. 162, 448–450.

    PubMed  CAS  Google Scholar 

  • Vivancos, A., E. Castillo, E. Biteau, C. Nicot, J. Ayté, M. Toledano, and E. Hidalgo. 2005. A cysteine-sulfinic acid in peroxiredoxin regulates H2O2-sensing by the antioxidant Pap1 pathway. Proc. Natl. Acad. Sci. USA 102, 8875–8880.

    Article  PubMed  CAS  Google Scholar 

  • Vlamis-Gardikas, A. and A. Holmgren. 2002 Thioredoxin and glutaredoxin isoforms. Methods Enzymol. 347, 286–296.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Hye Roe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, JY., Roe, JH. The role and regulation of Trxl, a cytosolic thioredoxin in Schizosaccharomyces pombe . J Microbiol. 46, 408–414 (2008). https://doi.org/10.1007/s12275-008-0076-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-008-0076-4

Keywords

Navigation