Skip to main content
Log in

A second order turbulence model for the prediction of air movement and heat transfer in a ventilated room

  • Research Article
  • Published:
Building Simulation Aims and scope Submit manuscript

Abstract

A full-scale test room is used to investigate experimentally and numerically the velocity and temperature fields in the case of a mechanical ventilation. Detailed fields are measured for three cases of ventilation air temperature: an isothermal case, a hot case, and a cold case. The experimental data are used to test two turbulence models: a first order k-ε realizable turbulence model and a second order quadratic RSM (Reynolds Stress Model) turbulence model. The RSM model predicts the temperature and velocity fields better than the k-ε turbulence model. In particular, global values of velocity and temperature coming from experiments are in good agreement with the RSM turbulence model. This conclusion is confirmed using a turbulence analysis based on Lumley triangles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ar :

Archimede number

D :

flow rate (m3/h)

d :

inlet diameter (m)

g :

acceleration due to gravity (m/s2)

k :

turbulent kinetic energy (m2/s2)

Pr :

Prandtl number

Re :

Reynolds number

R ij :

Reynolds-stress tensor component (m2/s2)

T :

mean temperature (K)

U :

mean velocity magnitude (m/s)

u i :

velocity fluctuation component (m/s)

x, y, z :

coordinate (m)

β :

coefficient of thermal expansion (K−1)

µ :

dynamic viscosity (Pa·s)

ν :

kinematic viscosity (m2/s)

ε :

dissipation rate of k (m2/s3)

ρ :

mass density (kg/m3)

II, III :

original Lumley invariants

II*, III*:

modified Lumley invariants

\( \overline {( )} \) :

time average

in:

inlet

m:

mean

M:

maximum

t:

turbulent

References

  • Allard F, Brau J, Pallier JM (1982). Étude de l’incidence des apports solaires sur une cellule test en ambiance climatique simulée. Report no 811106933328, INSA Lyon. 51p. (in French).

  • Awbi HB (1989). Application of computational fluid dynamics in room ventilation. Building and Environment, 24(1): 73–84.

    Article  Google Scholar 

  • Chen Q (1996). Prediction of room air motion by Reynolds-stress models. Building and Environment, 31(3): 233–244.

    Article  Google Scholar 

  • Davidson L (1996). Implementation of a large eddy simulation method applied to recirculating flow in a ventilated room. Technical Report no R9611, Aalborg University of Technology, 29 p.

  • Davidson L (1997). LES of recirculating flow without any homogenous direction: a dynamic one-equation subgrid model. Paper presented at the 7th International Symposium on Turbulence, Heat and Mass Transfer, Delft, Netherlands.

  • Gibson MM, Launder BE (1978). Ground effects on pressure fluctuations in the atmospheric boundary layer. Journal of Fluid Mechanics, 86(3): 491–511.

    Article  MATH  Google Scholar 

  • Kader B (1993). Temperature and Concentration Profiles in Fully Turbulent Boundary Layers. International Journal of Heat and Mass Transfer, 24(9): 1541–1544.

    Article  Google Scholar 

  • Kuznik F, Brau J (2005). Numerical and experimental investigation of a mechanically ventilated room: the impact of the inlet boundary conditions on CFD modelling of the ventilation system. International Journal of Ventilation, 4(2):113–122.

    Google Scholar 

  • Kuznik F (2005). Etude expérimentale des jets axisymétriques anisothermes horizontaux se développant près d’une paroi. Application à la modélisation numérique des cavités ventilées. PhD Thesis. National Institute of Applied Sciences, Lyon. (in French).

    Google Scholar 

  • Kuznik F, Rusaouen G, Hohota R (2006). Experimetal and numerical study of a mechanically ventilated enclosure with thermal effects. Energy and Buildings, 38(8): 939–948.

    Article  Google Scholar 

  • Kuznik F, Rusaouen G, Brau J (2007). Experimental and numerical study of a full scale ventilated enclosure: comparison of four two equations closure turbulence models. Building and Environment, 42(3): 1043–1053.

    Article  Google Scholar 

  • Lumley JL (1978). Computational modeling of turbulent flows. Advances in Applied Mechanics, 18: 123–176.

    Article  MathSciNet  MATH  Google Scholar 

  • Luo S, Heikkinen J, Roux B (2004). Simulation of air flow in the IEA Annex 20 test room—validation of a simplified model for the nozzle diffuser in isothermal case. Building and Environment, 39(12): 1403–1415.

    Article  Google Scholar 

  • Nielsen PV (1994). Computational fluid dynamics in ventilation. PhD Thesis. Aalborg University, Denmark.

    Google Scholar 

  • Nielsen PV (1998). The selection of turbulence models for prediction of room airflow. ASHRAE Transactions, 104(1B): 1119–1127.

    Google Scholar 

  • Peng SH, Davidson L (2000). The potential of large eddy simulation techniques for modelling indoor airflow. Paper presented at the 7th International Conference on Air Distribution in Rooms, Oxford, England.

  • Pope SB (2000). Turbulent Flows. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Posner JD, Buchanan CR, Dunne-Rankin D (2003). Measurement and prediction of indoor air flow in a model room. Energy and Buildings, 35: 515–526.

    Article  Google Scholar 

  • Scalin A, Nielsen PV (2004). Impact of turbulent anisotropy near walls in room air flow. International Journal of Indoor Environment and Health, 14(3): 159–168.

    Google Scholar 

  • Schiestel R (1993). Modélisation et simulation des écoulements turbulents. Paris: Hermès. (in French).

    MATH  Google Scholar 

  • Shih T, Liou WW, Shabbir A, Yang Z, Zhu J (1995). A new k-εeddy viscosity model for high Reynolds number turbulent flows. Journal of Computer Fluids, 24(3): 227–238.

    Article  MATH  Google Scholar 

  • Sinha SL, Arora RC, Roy S (2000). Numerical simulation of two dimensional room air flow with and without buoyancy. Energy and Buildings, 32(1): 121–129.

    Article  Google Scholar 

  • Speziale CG, Sarkar S, Gatski T (1991). Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach. Journal of Fluid Mechanics, 227: 245–272.

    Article  MATH  Google Scholar 

  • Teodosiu C (2001). Modélisation de systèmes techniques dans le domaine des équipements des bâtiments à l’aide des codes de type CFD. PhD Thesis. National Institute of Applied Sciences, Lyon. (in Fench).

    Google Scholar 

  • Tornstrom T, Moshfegh B (2006). RSM prediction of 3-D turbulent cold wall jet. Progress in Computational Fluid Dynamics, 6: 110–121.

    Article  Google Scholar 

  • Xu W, Chen Q (2000). Simulation of mixed convection flow with a two layer turbulence model. Indoor Air, 10(4): 306–314.

    Article  Google Scholar 

  • Weather JW, Spitler JD (1993). A comparative study of room airflow: numerical prediction using computational fluid dynamics and full-scale experimental. ASHRAE Transactions, 99(2): 144–157.

    Google Scholar 

  • Wolfshtein M (1969). The velocity and temperature distribution of one dimensional flow with turbulence augmentation and pressure gradient. International Journal of Heat and Mass Transfer, 12: 301–318.

    Article  Google Scholar 

  • Zhai Z, Zhang Z, Zhang W, Chen Q (2007). Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: part 1-summary of prevalent turbulence models. HVAC&R Research, 13(6): 853–870.

    Article  Google Scholar 

  • Zhang W, Chen Q (1999). A new filtered dynamic subgrid-scale model for large eddy simulation of indoor airflow. Paper presented at the 6th International IBPSA Conference, Kyoto, Japan.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Kuznik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznik, F., Rusaouen, G. & Brau, J. A second order turbulence model for the prediction of air movement and heat transfer in a ventilated room. Build. Simul. 1, 72–82 (2008). https://doi.org/10.1007/s12273-008-8308-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12273-008-8308-4

Keywords

Navigation