Skip to main content
Log in

Pro-apoptotic peptides-based cancer therapies: challenges and strategies to enhance therapeutic efficacy

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Cancer is a leading cause of death worldwide. Despite many advances in the field of cancer therapy, an effective cure is yet to be found. As a more potent alternative for the conventional small molecule anti-cancer drugs, pro-apoptotic peptides have emerged as a new class of anticancer agents. By interaction with certain members in the apoptotic pathways, they could effectively kill tumor cells. However, there remain bottleneck challenges for clinical application of these pro-apoptotic peptides in cancer therapy. In this review, we will overview the developed pro-apoptotic peptides and outline the widely adopted molecular-based and nanoparticle-based strategies to enhance their anti-tumor effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

The figure from (Sharma et al. 2017a, b) was modified with permission

Fig. 4

The figure from (Shah et al. 2014) was modified with permission

Similar content being viewed by others

References

  • Acar H, Srivastava S, Chung EJ, Schnorenberg MR, Barrett JC, LaBelle JL, Tirrell M (2017) Self-assembling peptide-based building blocks in medical applications. Adv Drug Deliv Rev 110–111:65–79

    Article  PubMed  CAS  Google Scholar 

  • Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    Article  PubMed  CAS  Google Scholar 

  • Agemy L, Friedmann-Morvinski D, Kotamraju VR, Roth L, Sugahara KN, Girard OM, Mattrey RF, Verma IM, Ruoslahti E (2011) Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc Natl Acad Sci USA 108:17450–17455

    Article  PubMed  CAS  Google Scholar 

  • Ahmad R, Alam M, Hasegawa M, Uchida Y, Al-Obaid O, Kharbanda S, Kufe D (2017) Targeting MUC1-C inhibits the AKT-S6K1-elF4A pathway regulating TIGAR translation in colorectal cancer. Mol Cancer 16:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akrami M, Balalaie S, Hosseinkhani S, Alipour M, Salehi F, Bahador A, Haririan I (2016) Tuning the anticancer activity of a novel pro-apoptotic peptide using gold nanoparticle platforms. Sci Rep 6:31030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alberici L, Roth L, Sugahara KN, Agemy L, Kotamraju VR, Teesalu T, Bordignon C, Traversari C, Rizzardi GP, Ruoslahti E (2013) De novo design of a tumor-penetrating peptide. Cancer Res 73:804–812

    Article  PubMed  CAS  Google Scholar 

  • Alex S, Tiwari A (2015) Functionalized gold nanoparticles: synthesis, properties and applications–a review. J Nanosci Nanotechnol 15:1869–1894

    Article  PubMed  CAS  Google Scholar 

  • Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2:750–763

    Article  PubMed  CAS  Google Scholar 

  • An P, Lei H, Zhang J, Song S, He L, Jin G, Liu X, Wu J, Meng L, Liu M, Shou C (2004) Suppression of tumor growth and metastasis by a VEGFR-1 antagonizing peptide identified from a phage display library. Int J Cancer 111:165–173

    Article  PubMed  CAS  Google Scholar 

  • Arlt A, Gehrz A, Muerkoster S, Vorndamm J, Kruse ML, Folsch UR, Schafer H (2003) Role of NF-kappaB and Akt/PI3 K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene 22:3243–3251

    Article  PubMed  CAS  Google Scholar 

  • Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM, vanTuinen P, Ledbetter DH, Barker DF, Nakamura Y, White R, Vogelstein B (1989) Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244:217–221

    Article  PubMed  CAS  Google Scholar 

  • Baluk P, Hashizume H, McDonald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15:102–111

    Article  PubMed  CAS  Google Scholar 

  • Bechara C, Sagan S (2013) Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett 587:1693–1702

    Article  PubMed  CAS  Google Scholar 

  • Belkahla H, Herlem G, Picaud F, Gharbi T, Hemadi M, Ammar S, Micheau O (2017) TRAIL-NP hybrids for cancer therapy: a review. Nanoscale 9:5755–5768

    Article  PubMed  CAS  Google Scholar 

  • Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25

    Article  PubMed  CAS  Google Scholar 

  • Billard C (2013) BH3 mimetics: status of the field and new developments. Mol Cancer Ther 12:1691–1700

    Article  PubMed  CAS  Google Scholar 

  • Binetruy-Tournaire R, Demangel C, Malavaud B, Vassy R, Rouyre S, Kraemer M, Plouet J, Derbin C, Perret G, Mazie JC (2000) Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis. EMBO J 19:1525–1533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33:2373–2387

    Article  PubMed  CAS  Google Scholar 

  • Bouchet S, Tang R, Fava F, Legrand O, Bauvois B (2016) The CNGRC-GG-D (KLAKLAK) 2 peptide induces a caspase-independent, Ca2 + -dependent death in human leukemic myeloid cells by targeting surface aminopeptidase N/CD13. Oncotarget 7:19445

    Article  PubMed  Google Scholar 

  • Buckley CD, Pilling D, Henriquez NV, Parsonage G, Threlfall K, Scheel-Toellner D, Simmons DL, Akbar AN, Lord JM, Salmon M (1999) RGD peptides induce apoptosis by direct caspase-3 activation. Nature 397:534–539

    Article  PubMed  CAS  Google Scholar 

  • Chari RV, Miller ML, Widdison WC (2014) Antibody-drug conjugates: an emerging concept in cancer therapy. Angew Chem Int Ed Engl 53:3796–3827

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Goeddel DV (2002) TNF-R1 signaling: a beautiful pathway. Science 296:1634–1635

    Article  PubMed  CAS  Google Scholar 

  • Chen WH, Chen JX, Cheng H, Chen CS, Yang J, Xu XD, Wang Y, Zhuo RX, Zhang XZ (2013a) A new anti-cancer strategy of damaging mitochondria by pro-apoptotic peptide functionalized gold nanoparticles. Chem Commun (Camb) 49:6403–6405

    Article  CAS  Google Scholar 

  • Chen WH, Xu XD, Luo GF, Jia HZ, Lei Q, Cheng SX, Zhuo RX, Zhang XZ (2013b) Dual-targeting pro-apoptotic peptide for programmed cancer cell death via specific mitochondria damage. Sci Rep 3:3468

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho YY (2017) RSK2 and its binding partners in cell proliferation, transformation and cancer development. Arch Pharm Res 40:291–303

    Article  PubMed  CAS  Google Scholar 

  • Christian S, Pilch J, Akerman ME, Porkka K, Laakkonen P, Ruoslahti E (2003) Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J Cell Biol 163:871–878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chu DS, Bocek MJ, Shi J, Ta A, Ngambenjawong C, Rostomily RC, Pun SH (2015) Multivalent display of pendant pro-apoptotic peptides increases cytotoxic activity. J Control Release 205:155–161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cieslewicz M, Tang J, Yu JL, Cao H, Zavaljevski M, Motoyama K, Lieber A, Raines EW, Pun SH (2013) Targeted delivery of proapoptotic peptides to tumor-associated macrophages improves survival. Proc Natl Acad Sci USA 110:15919–15924

    Article  PubMed  Google Scholar 

  • Cole AJ, Yang VC, David AE (2011) Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends Biotechnol 29:323–332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colombo G, Curnis F, De Mori GM, Gasparri A, Longoni C, Sacchi A, Longhi R, Corti A (2002) Structure-activity relationships of linear and cyclic peptides containing the NGR tumor-homing motif. J Biol Chem 277:47891–47897

    Article  PubMed  CAS  Google Scholar 

  • Corti A, Curnis F (2011) Tumor vasculature targeting through NGR peptide-based drug delivery systems. Curr Pharm Biotechnol 12:1128–1134

    Article  PubMed  CAS  Google Scholar 

  • Curnis F, Gasparri A, Sacchi A, Cattaneo A, Magni F, Corti A (2005) Targeted delivery of IFNgamma to tumor vessels uncouples antitumor from counterregulatory mechanisms. Cancer Res 65:2906–2913

    Article  PubMed  CAS  Google Scholar 

  • Curry T, Kopelman R, Shilo M, Popovtzer R (2014) Multifunctional theranostic gold nanoparticles for targeted CT imaging and photothermal therapy. Contrast Media Mol Imaging 9:53–61

    Article  PubMed  CAS  Google Scholar 

  • Curtis KK, Sarantopoulos J, Northfelt DW, Weiss GJ, Barnhart KM, Whisnant JK, Leuschner C, Alila H, Borad MJ, Ramanathan RK (2014) Novel LHRH-receptor-targeted cytolytic peptide, EP-100: first-in-human phase I study in patients with advanced LHRH-receptor-expressing solid tumors. Cancer Chemother Pharmacol 73:931–941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai H, Meng XW, Kaufmann SH (2016) Mitochondrial apoptosis and BH3 mimetics. F1000Res 5:2804

  • Daniels TR, Bernabeu E, Rodriguez JA, Patel S, Kozman M, Chiappetta DA, Holler E, Ljubimova JY, Helguera G, Penichet ML (2012) The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta 1820:291–317

    Article  PubMed  CAS  Google Scholar 

  • David A (2017) Peptide ligand-modified nanomedicines for targeting cells at the tumor microenvironment. Adv Drug Deliv Rev 119:120–142

    Article  PubMed  CAS  Google Scholar 

  • Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dharap SS, Minko T (2003) Targeted proapoptotic LHRH-BH3 peptide. Pharm Res 20:889–896

    Article  PubMed  CAS  Google Scholar 

  • Dickerson EB, Akhtar N, Steinberg H, Wang ZY, Lindstrom MJ, Padilla ML, Auerbach R, Helfand SC (2004) Enhancement of the antiangiogenic activity of interleukin-12 by peptide targeted delivery of the cytokine to alphavbeta3 integrin. Mol Cancer Res 2:663–673

    PubMed  CAS  Google Scholar 

  • Dufort S, Sancey L, Hurbin A, Foillard S, Boturyn D, Dumy P, Coll JL (2011) Targeted delivery of a proapoptotic peptide to tumors in vivo. J Drug Target 19:582–588

    Article  PubMed  CAS  Google Scholar 

  • Durrer P, Galli C, Hoenke S, Corti C, Gluck R, Vorherr T, Brunner J (1996) H + -induced membrane insertion of influenza virus hemagglutinin involves the HA2 amino-terminal fusion peptide but not the coiled coil region. J Biol Chem 271:13417–13421

    Article  PubMed  CAS  Google Scholar 

  • Duvall CL, Convertine AJ, Benoit DS, Hoffman AS, Stayton PS (2010) Intracellular delivery of a proapoptotic peptide via conjugation to a RAFT synthesized endosomolytic polymer. Mol Pharm 7:468–476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD, Krajewski S, Lombardo CR, Rao R, Ruoslahti E, Bredesen DE, Pasqualini R (1999) Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 5:1032–1038

    Article  PubMed  CAS  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Erazo-Oliveras A, Muthukrishnan N, Baker R, Wang TY, Pellois JP (2012) Improving the endosomal escape of cell-penetrating peptides and their cargos: strategies and challenges. Pharmaceuticals (Basel) 5:1177–1209

    Article  CAS  Google Scholar 

  • Eskandari S, Guerin T, Toth I, Stephenson RJ (2017) Recent advances in self-assembled peptides: Implications for targeted drug delivery and vaccine engineering. Adv Drug Deliv Rev 110–111:169–187

    Article  PubMed  CAS  Google Scholar 

  • Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–151

    Article  PubMed  CAS  Google Scholar 

  • Farsinejad S, Gheisary Z, Ebrahimi Samani S, Alizadeh AM (2015) Mitochondrial targeted peptides for cancer therapy. Tumour Biol 36:5715–5725

    Article  PubMed  CAS  Google Scholar 

  • Foight GW, Ryan JA, Gulla SV, Letai A, Keating AE (2014) Designed BH3 peptides with high affinity and specificity for targeting Mcl-1 in cells. ACS Chem Biol 9:1962–1968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189–1193

    Article  PubMed  CAS  Google Scholar 

  • Fu B, Long W, Zhang Y, Zhang A, Miao F, Shen Y, Pan N, Gan G, Nie F, He Y, Zhang J, Teng G (2015) Enhanced antitumor effects of the BRBP1 compound peptide BRBP1-TAT-KLA on human brain metastatic breast cancer. Sci Rep 5:8029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garanger E, Boturyn D, Dumy P (2007) Tumor targeting with RGD peptide ligands-design of new molecular conjugates for imaging and therapy of cancers. Anticancer Agents Med Chem 7:552–558

    Article  PubMed  CAS  Google Scholar 

  • Gaspar D, Veiga AS, Castanho MA (2013) From antimicrobial to anticancer peptides. A review. Front Microbiol 4:294

    Article  PubMed  PubMed Central  Google Scholar 

  • Glinka Y, Prud’homme GJ (2008) Neuropilin-1 is a receptor for transforming growth factor beta-1, activates its latent form, and promotes regulatory T cell activity. J Leukoc Biol 84:302–310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Liu Y, Cao X (2017) Evolving strategies for tumor immunotherapy: enhancing the enhancer and suppressing the suppressor. Natl Sci Rev 4:161–163

    Article  Google Scholar 

  • Ham SH, Min KA, Shin MC (2017) Molecular tumor targeting of gelonin by fusion with F3 peptide. Acta Pharmacol Sin 38:897–906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han X, Bushweller JH, Cafiso DS, Tamm LK (2001) Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Nat Struct Biol 8:715–720

    Article  PubMed  CAS  Google Scholar 

  • Harris MH, Thompson CB (2000) The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ 7:1182–1191

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa M, Sinha RK, Kumar M, Alam M, Yin L, Raina D, Kharbanda A, Panchamoorthy G, Gupta D, Singh H, Kharbanda S, Kufe D (2015) Intracellular Targeting of the Oncogenic MUC1-C Protein with a Novel GO-203 Nanoparticle Formulation. Clin Cancer Res 21:2338–2347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haupt S, Berger M, Goldberg Z, Haupt Y (2003) Apoptosis—the p53 network. J Cell Sci 116:4077–4085

    Article  PubMed  CAS  Google Scholar 

  • Heldin CH, Ostman A, Ronnstrand L (1998) Signal transduction via platelet-derived growth factor receptors. Biochim Biophys Acta 1378:F79–113

    PubMed  CAS  Google Scholar 

  • Herbst RS (2004) Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 59:21–26

    Article  PubMed  CAS  Google Scholar 

  • Hetian L, Ping A, Shumei S, Xiaoying L, Luowen H, Jian W, Lin M, Meisheng L, Junshan Y, Chengchao S (2002) A novel peptide isolated from a phage display library inhibits tumor growth and metastasis by blocking the binding of vascular endothelial growth factor to its kinase domain receptor. J Biol Chem 277:43137–43142

    Article  PubMed  CAS  Google Scholar 

  • Hoffman AS (2013) Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv Drug Deliv Rev 65:10–16

    Article  PubMed  CAS  Google Scholar 

  • Holler N, Tardivel A, Kovacsovics-Bankowski M, Hertig S, Gaide O, Martinon F, Tinel A, Deperthes D, Calderara S, Schulthess T, Engel J, Schneider P, Tschopp J (2003) Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death-inducing signaling complex. Mol Cell Biol 23:1428–1440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253:49–53

    Article  PubMed  CAS  Google Scholar 

  • Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13:714–726

    Article  PubMed  CAS  Google Scholar 

  • Hong B, van den Heuvel AP, Prabhu VV, Zhang S, El-Deiry WS (2014) Targeting tumor suppressor p53 for cancer therapy: strategies, challenges and opportunities. Curr Drug Targets 15:80–89

    Article  PubMed  CAS  Google Scholar 

  • Hossbach J, Michalsky E, Henklein P, Jaeger M, Daniel PT, Preissner R (2009) Inhibiting the inhibitors: retro-inverso Smac peptides. Peptides 30:2374–2379

    Article  PubMed  CAS  Google Scholar 

  • Huang K, Zhang J, O’Neill KL, Gurumurthy CB, Quadros RM, Tu Y, Luo X (2016) Cleavage by caspase 8 and mitochondrial membrane association activate the BH3-only protein Bid during TRAIL-induced apoptosis. J Biol Chem 291:11843–11851

    Article  PubMed  CAS  Google Scholar 

  • Hunt H, Simon-Gracia L, Tobi A, Kotamraju VR, Sharma S, Nigul M, Sugahara KN, Ruoslahti E, Teesalu T (2017) Targeting of p32 in peritoneal carcinomatosis with intraperitoneal linTT1 peptide-guided pro-apoptotic nanoparticles. J Control Release 260:142–153

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Javadpour MM, Juban MM, Lo WC, Bishop SM, Alberty JB, Cowell SM, Becker CL, McLaughlin ML (1996) De novo antimicrobial peptides with low mammalian cell toxicity. J Med Chem 39:3107–3113

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Yang N, Zhang H, Sun B, Hou C, Ji C, Zheng J, Liu Y, Zuo P (2016) Enhanced in vivo antitumor efficacy of dual-functional peptide-modified docetaxel nanoparticles through tumor targeting and Hsp90 inhibition. J Control Release 221:26–36

    Article  PubMed  CAS  Google Scholar 

  • Jung HK, Kim S, Park RW, Park JY, Kim IS, Lee B (2016) Bladder tumor-targeted delivery of pro-apoptotic peptide for cancer therapy. J Control Release 235:259–267

    Article  PubMed  CAS  Google Scholar 

  • Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116:2602–2663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karageorgis A, Claron M, Juge R, Aspord C, Thoreau F, Leloup C, Kucharczak J, Plumas J, Henry M, Hurbin A, Verdie P, Martinez J, Subra G, Dumy P, Boturyn D, Aouacheria A, Coll JL (2017) Systemic delivery of tumor-targeted bax-derived membrane-active peptides for the treatment of melanoma tumors in a humanized SCID mouse model. Mol Ther 25:534–546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri SM, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref AR, Haghani L, Bahrami S, Hamblin MR (2016) Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 45:1457–1501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kawamoto M, Horibe T, Kohno M, Kawakami K (2011) A novel transferrin receptor-targeted hybrid peptide disintegrates cancer cell membrane to induce rapid killing of cancer cells. BMC Cancer 11:359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kerbel R, Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2:727–739

    Article  PubMed  CAS  Google Scholar 

  • Kern HB, Srinivasan S, Convertine AJ, Hockenbery D, Press OW, Stayton PS (2017) Enzyme-cleavable polymeric micelles for the intracellular delivery of proapoptotic peptides. Mol Pharm 14:1450–1459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim AL, Raffo AJ, Brandt-Rauf PW, Pincus MR, Monaco R, Abarzua P, Fine RL (1999) Conformational and molecular basis for induction of apoptosis by a p53 C-terminal peptide in human cancer cells. J Biol Chem 274:34924–34931

    Article  PubMed  CAS  Google Scholar 

  • Ko JK, Choi KH, Peng J, He F, Zhang Z, Weisleder N, Lin J, Ma J (2011) Amphipathic tail-anchoring peptide and Bcl-2 homology domain-3 (BH3) peptides from Bcl-2 family proteins induce apoptosis through different mechanisms. J Biol Chem 286:9038–9048

    Article  PubMed  CAS  Google Scholar 

  • Kohno M, Horibe T, Haramoto M, Yano Y, Ohara K, Nakajima O, Matsuzaki K, Kawakami K (2011) A novel hybrid peptide targeting EGFR-expressing cancers. Eur J Cancer 47:773–783

    Article  PubMed  CAS  Google Scholar 

  • Kolodkin AL, Levengood DV, Rowe EG, Tai YT, Giger RJ, Ginty DD (1997) Neuropilin is a semaphorin III receptor. Cell 90:753–762

    Article  PubMed  CAS  Google Scholar 

  • Kumar M, Gupta D, Singh G, Sharma S, Bhat M, Prashant CK, Dinda AK, Kharbanda S, Kufe D, Singh H (2014) Novel polymeric nanoparticles for intracellular delivery of peptide Cargos: antitumor efficacy of the BCL-2 conversion peptide NuBCP-9. Cancer Res 74:3271–3281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laakkonen P, Porkka K, Hoffman JA, Ruoslahti E (2002) A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nat Med 8:751–755

    Article  PubMed  CAS  Google Scholar 

  • Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J (2015) Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev 115:10637–10689

    Article  PubMed  CAS  Google Scholar 

  • Leuschner C, Coulter A, Keener J, Alila H (2017) Targeted oncolytic peptide for treatment of ovarian cancers. Int J Cancer Res Mol Mech 3

  • Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  PubMed  CAS  Google Scholar 

  • Li W, Nicol F, Szoka FC Jr (2004) GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Adv Drug Deliv Rev 56:967–985

    Article  PubMed  CAS  Google Scholar 

  • Li H, Nelson CE, Evans BC, Duvall CL (2011) Delivery of intracellular-acting biologics in pro-apoptotic therapies. Curr Pharm Des 17:293–319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li K, Lv XX, Hua F, Lin H, Sun W, Cao WB, Fu XM, Xie J, Yu JJ, Li Z, Liu H, Han MZ, Hu ZW (2014) Targeting acute myeloid leukemia with a proapoptotic peptide conjugated to a Toll-like receptor 2-mediated cell-penetrating peptide. Int J Cancer 134:692–702

    Article  PubMed  CAS  Google Scholar 

  • Li M, Liu P, Gao G, Deng J, Pan Z, Wu X, Xie G, Yue C, Cho CH, Ma Y, Cai L (2015) Smac therapeutic Peptide nanoparticles inducing apoptosis of cancer cells for combination chemotherapy with Doxorubicin. ACS Appl Mater Interfaces 7:8005–8012

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Han Y, Fu H, Liu M, Wu J, Chen X, Zhang S, Chen Y (2013) Construction and expression of sTRAIL-melittin combining enhanced anticancer activity with antibacterial activity in Escherichia coli. Appl Microbiol Biotechnol 97:2877–2884

    Article  PubMed  CAS  Google Scholar 

  • Liu GW, Livesay BR, Kacherovsky NA, Cieslewicz M, Lutz E, Waalkes A, Jensen MC, Salipante SJ, Pun SH (2015) Efficient identification of murine M2 macrophage peptide targeting ligands by phage display and next-generation sequencing. Bioconjug Chem 26:1811–1817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lonn P, Kacsinta AD, Cui XS, Hamil AS, Kaulich M, Gogoi K, Dowdy SF (2016) Enhancing endosomal escape for intracellular delivery of macromolecular biologic therapeutics. Sci Rep 6:32301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo GF, Chen WH, Liu Y, Lei Q, Zhuo RX, Zhang XZ (2014) Multifunctional enveloped mesoporous silica nanoparticles for subcellular co-delivery of drug and therapeutic peptide. Sci Rep 4:6064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma C, Yin G, You F, Wei Y, Huang Z, Chen X, Yan D (2013a) A specific cell-penetrating peptide induces apoptosis in SKOV3 cells by down-regulation of Bcl-2. Biotechnol Lett 35:1791–1797

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Kohli M, Smith A (2013b) Nanoparticles for combination drug therapy. ACS Nano 7:9518–9525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martens CL, Cwirla SE, Lee RY, Whitehorn E, Chen EY, Bakker A, Martin EL, Wagstrom C, Gopalan P, Smith CW, Tate E (1995) Peptides which bind to E-selectin and block neutrophil adhesion. J Biol Chem 270:21129–21136

    Article  PubMed  CAS  Google Scholar 

  • McDonald DM, Foss AJ (2000) Endothelial cells of tumor vessels: abnormal but not absent. Cancer Metastasis Rev 19:109–120

    Article  PubMed  CAS  Google Scholar 

  • Menard S, Pupa SM, Campiglio M, Tagliabue E (2003) Biologic and therapeutic role of HER2 in cancer. Oncogene 22:6570–6578

    Article  PubMed  CAS  Google Scholar 

  • Merkel O, Taylor N, Prutsch N, Staber PB, Moriggl R, Turner SD, Kenner L (2017) When the guardian sleeps: reactivation of the p53 pathway in cancer. Mutat Res 773:1–13

    Article  PubMed  CAS  Google Scholar 

  • Meyer M, Zintchenko A, Ogris M, Wagner E (2007) A dimethylmaleic acid-melittin-polylysine conjugate with reduced toxicity, pH-triggered endosomolytic activity and enhanced gene transfer potential. J Gene Med 9:797–805

    Article  PubMed  CAS  Google Scholar 

  • Miao YR, Eckhardt BL, Cao Y, Pasqualini R, Argani P, Arap W, Ramsay RG, Anderson RL (2013) Inhibition of established micrometastases by targeted drug delivery via cell surface-associated GRP78. Clin Cancer Res 19:2107–2116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  PubMed  CAS  Google Scholar 

  • Moschovi M, Critselis E, Cen O, Adamaki M, Lambrou GI, Chrousos GP, Vlahopoulos S (2015) Drugs acting on homeostasis: challenging cancer cell adaptation. Expert Rev Anticancer Ther 15:1405–1417

    Article  PubMed  CAS  Google Scholar 

  • Mozhi A, Ahmad I, Okeke CI, Li C, Liang X-J (2017) pH-sensitive polymeric micelles for the Co-delivery of proapoptotic peptide and anticancer drug for synergistic cancer therapy. RSC Adv 7:12886–12896

    Article  CAS  Google Scholar 

  • Mulder KC, Lima LA, Miranda VJ, Dias SC, Franco OL (2013) Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides. Front Microbiol 4:321

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagata S (1996) Fas-mediated apoptosis. Adv Exp Med Biol 406:119–124

    Article  PubMed  CAS  Google Scholar 

  • Nagata S (2018) Apoptosis and clearance of apoptotic cells. Annu Rev Immunol 36:489–517

    Article  PubMed  CAS  Google Scholar 

  • Ngambenjawong C, Pun SH (2017) Multivalent polymers displaying M2 macrophage-targeting peptides improve target binding avidity and serum stability. ACS Biomater Sci Eng 3:2050–2053

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ngambenjawong C, Cieslewicz M, Schellinger JG, Pun SH (2016) Synthesis and evaluation of multivalent M2pep peptides for targeting alternatively activated M2 macrophages. J Control Release 224:103–111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nicholson RI, Gee JM, Harper ME (2001) EGFR and cancer prognosis. Eur J Cancer 37(Suppl 4):S9–15

    Article  PubMed  CAS  Google Scholar 

  • Norum OJ, Selbo PK, Weyergang A, Giercksky KE, Berg K (2009) Photochemical internalization (PCI) in cancer therapy: from bench towards bedside medicine. J Photochem Photobiol B 96:83–92

    Article  PubMed  CAS  Google Scholar 

  • Pang HB, Braun GB, Friman T, Aza-Blanc P, Ruidiaz ME, Sugahara KN, Teesalu T, Ruoslahti E (2014) An endocytosis pathway initiated through neuropilin-1 and regulated by nutrient availability. Nat Commun 5:4904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoslahti E (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60:722–727

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pavet V, Beyrath J, Pardin C, Morizot A, Lechner MC, Briand JP, Wendland M, Maison W, Fournel S, Micheau O, Guichard G, Gronemeyer H (2010) Multivalent DR5 peptides activate the TRAIL death pathway and exert tumoricidal activity. Cancer Res 70:1101–1110

    Article  PubMed  CAS  Google Scholar 

  • Plank C, Zauner W, Wagner E (1998) Application of membrane-active peptides for drug and gene delivery across cellular membranes. Adv Drug Deliv Rev 34:21–35

    Article  PubMed  CAS  Google Scholar 

  • Pollak M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8:915–928

    Article  PubMed  CAS  Google Scholar 

  • Portt L, Norman G, Clapp C, Greenwood M, Greenwood MT (2011) Anti-apoptosis and cell survival: a review. Biochim Biophys Acta 1813:238–259

    Article  PubMed  CAS  Google Scholar 

  • Prabhu RH, Patravale VB, Joshi MD (2015) Polymeric nanoparticles for targeted treatment in oncology: current insights. Int J Nanomed 10:1001–1018

    CAS  Google Scholar 

  • Prezma T, Shteinfer A, Admoni L, Raviv Z, Sela I, Levi I, Shoshan-Barmatz V (2013) VDAC1-based peptides: novel pro-apoptotic agents and potential therapeutics for B-cell chronic lymphocytic leukemia. Cell Death Dis 4:e809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Procko E, Berguig GY, Shen BW, Song Y, Frayo S, Convertine AJ, Margineantu D, Booth G, Correia BE, Cheng Y, Schief WR, Hockenbery DM, Press OW, Stoddard BL, Stayton PS, Baker D (2014) A computationally designed inhibitor of an Epstein-Barr viral Bcl-2 protein induces apoptosis in infected cells. Cell 157:1644–1656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Proskuryakov SY, Konoplyannikov AG, Gabai VL (2003) Necrosis: a specific form of programmed cell death? Exp Cell Res 283:1–16

    Article  PubMed  CAS  Google Scholar 

  • Qifan W, Fen N, Ying X, Xinwei F, Jun D, Ge Z (2016) iRGD-targeted delivery of a pro-apoptotic peptide activated by cathepsin B inhibits tumor growth and metastasis in mice. Tumour Biol 37:10643–10652

    Article  PubMed  CAS  Google Scholar 

  • Quinto CA, Mohindra P, Tong S, Bao G (2015) Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment. Nanoscale 7:12728–12736

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raghuraman H, Chattopadhyay A (2007) Melittin: a membrane-active peptide with diverse functions. Biosci Rep 27:189–223

    Article  PubMed  CAS  Google Scholar 

  • Rathore R, McCallum JE, Varghese E, Florea AM, Busselberg D (2017) Overcoming chemotherapy drug resistance by targeting inhibitors of apoptosis proteins (IAPs). Apoptosis 22:898–919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reinhardt A, Neundorf I (2016) Design and application of antimicrobial peptide conjugates. Int J Mol Sci 17(5):701

    Article  PubMed Central  CAS  Google Scholar 

  • Rezaei Araghi R, Bird GH, Ryan JA, Jenson JM, Godes M, Pritz JR, Grant RA, Letai A, Walensky LD, Keating AE (2018) Iterative optimization yields Mcl-1-targeting stapled peptides with selective cytotoxicity to Mcl-1-dependent cancer cells. Proc Natl Acad Sci USA 115:E886–E895

    Article  PubMed  CAS  Google Scholar 

  • Roth L, Agemy L, Kotamraju VR, Braun G, Teesalu T, Sugahara KN, Hamzah J, Ruoslahti E (2012) Transtumoral targeting enabled by a novel neuropilin-binding peptide. Oncogene 31:3754–3763

    Article  PubMed  CAS  Google Scholar 

  • Ruoslahti E (2017) Tumor penetrating peptides for improved drug delivery. Adv Drug Deliv Rev 110–111:3–12

    Article  PubMed  CAS  Google Scholar 

  • Ruoslahti E, Bhatia SN, Sailor MJ (2010) Targeting of drugs and nanoparticles to tumors. J Cell Biol 188:759–768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarangthem V, Kim Y, Singh TD, Seo BY, Cheon SH, Lee YJ, Lee BH, Park RW (2016) Multivalent targeting based delivery of therapeutic peptide using AP1-ELP carrier for effective cancer therapy. Theranostics 6:2235–2249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarosiek KA, Letai A (2016) Directly targeting the mitochondrial pathway of apoptosis for cancer therapy using BH3 mimetics—recent successes, current challenges and future promise. FEBS J 283:3523–3533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schally AV, Comaru-Schally AM, Nagy A, Kovacs M, Szepeshazi K, Plonowski A, Varga JL, Halmos G (2001) Hypothalamic hormones and cancer. Front Neuroendocrinol 22:248–291

    Article  PubMed  CAS  Google Scholar 

  • Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670

    Article  PubMed  CAS  Google Scholar 

  • Selbo PK, Weyergang A, Hogset A, Norum OJ, Berstad MB, Vikdal M, Berg K (2010) Photochemical internalization provides time- and space-controlled endolysosomal escape of therapeutic molecules. J Control Release 148:2–12

    Article  PubMed  CAS  Google Scholar 

  • Seo YW, Woo HN, Piya S, Moon AR, Oh JW, Yun CW, Kim KK, Min JY, Jeong SY, Chung S, Song PI, Jeong SY, Choi EK, Seol DW, Kim TH (2009) The cell death-inducing activity of the peptide containing Noxa mitochondrial-targeting domain is associated with calcium release. Cancer Res 69:8356–8365

    Article  PubMed  CAS  Google Scholar 

  • Shah BP, Pasquale N, De G, Tan T, Ma J, Lee KB (2014) Core-shell nanoparticle-based peptide therapeutics and combined hyperthermia for enhanced cancer cell apoptosis. ACS Nano 8:9379–9387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236–248

    Article  PubMed  CAS  Google Scholar 

  • Shamay Y, Adar L, Ashkenasy G, David A (2011) Light induced drug delivery into cancer cells. Biomaterials 32:1377–1386

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Kotamraju VR, Molder T, Tobi A, Teesalu T, Ruoslahti E (2017a) Tumor-penetrating nanosystem strongly suppresses breast tumor growth. Nano Lett 17:1356–1364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma S, Mann AP, Molder T, Kotamraju VR, Mattrey R, Teesalu T, Ruoslahti E (2017b) Vascular changes in tumors resistant to a vascular disrupting nanoparticle treatment. J Control Release 268:49–56

    Article  PubMed  CAS  Google Scholar 

  • Shi Y (2001) A structural view of mitochondria-mediated apoptosis. Nat Struct Biol 8:394–401

    Article  PubMed  CAS  Google Scholar 

  • Shin MC, Zhang J, Min KA, Lee K, Byun Y, David AE, He H, Yang VC (2014) Cell-penetrating peptides: achievements and challenges in application for cancer treatment. J Biomed Mater Res A 102:575–587

    Article  PubMed  CAS  Google Scholar 

  • Shin MC, Min KA, Cheong H, Moon C, Huang Y, He H, Yang VC (2016) Preparation and characterization of gelonin-melittin fusion biotoxin for synergistically enhanced anti-tumor activity. Pharm Res 33:2218–2228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shin MC, Min KA, Cheong H, Moon C, Huang Y, He H, Yang VC (2017) Tandem-multimeric F3-gelonin fusion toxins for enhanced anti-cancer activity for prostate cancer treatment. Int J Pharm 524:101–110

    Article  PubMed  CAS  Google Scholar 

  • Simon PO Jr, McDunn JE, Kashiwagi H, Chang K, Goedegebuure PS, Hotchkiss RS, Hawkins WG (2009) Targeting AKT with the proapoptotic peptide, TAT-CTMP: a novel strategy for the treatment of human pancreatic adenocarcinoma. Int J Cancer 125:942–951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slowing II, Trewyn BG, Lin VS (2007) Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. J Am Chem Soc 129:8845–8849

    Article  PubMed  CAS  Google Scholar 

  • Slowing II, Vivero-Escoto JL, Wu CW, Lin VS (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–1288

    Article  PubMed  CAS  Google Scholar 

  • Standley SM, Toft DJ, Cheng H, Soukasene S, Chen J, Raja SM, Band V, Band H, Cryns VL, Stupp SI (2010) Induction of cancer cell death by self-assembling nanostructures incorporating a cytotoxic peptide. Cancer Res 70:3020–3026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Staquicini FI, Ozawa MG, Moya CA, Driessen WH, Barbu EM, Nishimori H, Soghomonyan S, Flores LG 2nd, Liang X, Paolillo V, Alauddin MM, Basilion JP, Furnari FB, Bogler O, Lang FF, Aldape KD, Fuller GN, Hook M, Gelovani JG, Sidman RL, Cavenee WK, Pasqualini R, Arap W (2011) Systemic combinatorial peptide selection yields a non-canonical iron-mimicry mechanism for targeting tumors in a mouse model of human glioblastoma. J Clin Invest 121:161–173

    Article  PubMed  CAS  Google Scholar 

  • Steichen SD, Caldorera-Moore M, Peppas NA (2013) A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci 48:416–427

    Article  PubMed  CAS  Google Scholar 

  • Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41:147–162

    Article  PubMed  CAS  Google Scholar 

  • Sugahara KN, Braun GB, de Mendoza TH, Kotamraju VR, French RP, Lowy AM, Teesalu T, Ruoslahti E (2015) Tumor-penetrating iRGD peptide inhibits metastasis. Mol Cancer Ther 14:120–128

    Article  PubMed  CAS  Google Scholar 

  • Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632

    Article  PubMed  CAS  Google Scholar 

  • Thorburn A (2008) Apoptosis and autophagy: regulatory connections between two supposedly different processes. Apoptosis 13:1–9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tombacz E, Turcu R, Socoliuc V, Vekas L (2015) Magnetic iron oxide nanoparticles: Recent trends in design and synthesis of magnetoresponsive nanosystems. Biochem Biophys Res Commun 468:442–453

    Article  PubMed  CAS  Google Scholar 

  • Torchilin VP (2010) Passive and active drug targeting: drug delivery to tumors as an example. Handb Exp Pharmacol 3–53

  • Torchilin V (2011) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63:131–135

    Article  PubMed  CAS  Google Scholar 

  • Torchilin VP, Lukyanov AN (2003) Peptide and protein drug delivery to and into tumors: challenges and solutions. Drug Discov Today 8:259–266

    Article  PubMed  CAS  Google Scholar 

  • Tyuryaeva II, Lyublinskaya OG, Podkorytov IS, Skrynnikov NR (2017) Origin of anti-tumor activity of the cysteine-containing GO peptides and further optimization of their cytotoxic properties. Sci Rep 7:40217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verhagen AM, Vaux DL (2002) Cell death regulation by the mammalian IAP antagonist Diablo/Smac. Apoptosis 7:163–166

    Article  PubMed  CAS  Google Scholar 

  • Vigderman L, Zubarev ER (2013) Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv Drug Deliv Rev 65:663–676

    Article  PubMed  CAS  Google Scholar 

  • Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M (2010) Synthetic therapeutic peptides: science and market. Drug Discov Today 15:40–56

    Article  PubMed  CAS  Google Scholar 

  • Vrielink J, Heins MS, Setroikromo R, Szegezdi E, Mullally MM, Samali A, Quax WJ (2010) Synthetic constrained peptide selectively binds and antagonizes death receptor 5. FEBS J 277:1653–1665

    Article  PubMed  CAS  Google Scholar 

  • Wachter F, Morgan AM, Godes M, Mourtada R, Bird GH, Walensky LD (2017) Mechanistic validation of a clinical lead stapled peptide that reactivates p53 by dual HDM2 and HDMX targeting. Oncogene 36:2184–2190

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Wang H, Liang J, Jiang Y, Guo Q, Peng H, Xu Q, Huang Y (2014) Cell-penetrating apoptotic peptide/p53 DNA nanocomplex as adjuvant therapy for drug-resistant breast cancer. Mol Pharm 11:3352–3360

    Article  PubMed  CAS  Google Scholar 

  • Wharton SA, Martin SR, Ruigrok RW, Skehel JJ, Wiley DC (1988) Membrane fusion by peptide analogues of influenza virus haemagglutinin. J Gen Virol 69(Pt 8):1847–1857

    Article  PubMed  CAS  Google Scholar 

  • Wu D, Gao Y, Qi Y, Chen L, Ma Y, Li Y (2014) Peptide-based cancer therapy: opportunity and challenge. Cancer Lett 351:13–22

    Article  PubMed  CAS  Google Scholar 

  • Xin Q, Cun Z, Xiaochang X, Meng L, Weina L, Qiang H, Yingqi Z, Zhen Y, Wei Z (2013) Identification of a novel peptide ligand of human transfrrin receptor 1 for targeted tumor delivery drug. Protein Pept Lett 20:96–101

    Article  PubMed  Google Scholar 

  • Xu X, Ho W, Zhang X, Bertrand N, Farokhzad O (2015) Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol Med 21:223–232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Mashima T, Sato S, Mochizuki M, Sakamoto H, Yamori T, Oh-Hara T, Tsuruo T (2003) Predominant suppression of apoptosome by inhibitor of apoptosis protein in non-small cell lung cancer H460 cells: therapeutic effect of a novel polyarginine-conjugated Smac peptide. Cancer Res 63:831–837

    PubMed  CAS  Google Scholar 

  • Yang L, Zhang X, Ye M, Jiang J, Yang R, Fu T, Chen Y, Wang K, Liu C, Tan W (2011a) Aptamer-conjugated nanomaterials and their applications. Adv Drug Deliv Rev 63:1361–1370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang ZJ, Chee CE, Huang S, Sinicrope FA (2011b) The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 10:1533–1541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshimori A, Takasawa R, Hayakawa A, Mizuno M, Yoshida J, Tanuma S (2005) Structure-based design of an agonistic peptide targeting Fas. Apoptosis 10:323–329

    Article  PubMed  CAS  Google Scholar 

  • Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Yuan ZF, Wang Y, Chen WH, Luo GF, Cheng SX, Zhuo RX, Zhang XZ (2013) Multifunctional envelope-type mesoporous silica nanoparticles for tumor-triggered targeting drug delivery. J Am Chem Soc 135:5068–5073

    Article  PubMed  CAS  Google Scholar 

  • Zhong F, Harr MW, Bultynck G, Monaco G, Parys JB, De Smedt H, Rong YP, Molitoris JK, Lam M, Ryder C, Matsuyama S, Distelhorst CW (2011) Induction of Ca(2) + -driven apoptosis in chronic lymphocytic leukemia cells by peptide-mediated disruption of Bcl-2-IP3 receptor interaction. Blood 117:2924–2934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhong Y, Meng F, Deng C, Zhong Z (2014) Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromol 15:1955–1969

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by grants from the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (NRF-2015R1C1A1A02036781 to Meong Cheol Shin and NRF-2017R1C1B5015491 to Kyoung Ah Min).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meong Cheol Shin.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, K.A., Maharjan, P., Ham, S. et al. Pro-apoptotic peptides-based cancer therapies: challenges and strategies to enhance therapeutic efficacy. Arch. Pharm. Res. 41, 594–616 (2018). https://doi.org/10.1007/s12272-018-1038-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-018-1038-y

Keywords

Navigation