Skip to main content
Log in

A new cyclic dipeptide penicimutide: the activated production of cyclic dipeptides by introduction of neomycin-resistance in the marine-derived fungus Penicillium purpurogenum G59

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

A novel cyclic dipeptide, named penicimutide (1), and four known cyclic dipeptides, cyclo(l-Val-l-Pro) (2), cyclo(l-Ile-l-Pro) (3), cyclo(l-Leu-l-Pro) (4) and cyclo(l-Phe-l-Pro) (5), were isolated from a neomycin-resistant mutant of the marine-derived fungus Penicillium purpurogenum G59. The structure of 1, including the absolute configuration, was determined by spectroscopic and chemical methods, especially NMR and Marfey’s analysis. An unusual amino acid in 1, 4,5-didehydro-l-leucine, was found for the first time occurring in nature. HPLC–ESI–MS analysis evidenced that 13 were produced only in the mutant strain, but 4 and 5 were produced in both the mutant and parental strains, indicating that the introduction of neomycin-resistance in the mutant activated pathways of 13 biosynthesis that were silent in the parental strain. Compound 1 selectively inhibited HeLa cells (among five tested human cancer cell lines) with an inhibition rate (IR %) of 39.4 % at 100 µg/mL, a similar inhibition intensity to that of the positive control 5-fluorouracil (IR % of 41.4 % at 100 µg/mL against HeLa cells). The present work exemplifies the effectiveness of our previous DMSO-mediated method for introducing drug-resistance in fungi to activate silent biosynthetic pathways to obtain new bioactive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aravind L, de Souza RF, Iyer LM (2010) Predicted class-I aminoacyl tRNA synthetase-like proteins in non-ribosomal peptide synthesis. Biol Direct 5:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arunrattiyakorn P, Nitoda T, Kanzaki H (2006) Enzymatic conversion-based method for screening cyclic dipeptide-producing microbes. Peptides 27:633–639

    Article  CAS  PubMed  Google Scholar 

  • Bellezza I, Peirce MJ, Minelli A (2014) Cyclic dipeptides: from bugs to brain. Trends Mol Med 20:551–558

    Article  CAS  PubMed  Google Scholar 

  • Bhushan R, Brückner H (2004) Marfey’s reagent for chiral amino acid analysis: a review. Amino Acids 27:231–247

    Article  CAS  PubMed  Google Scholar 

  • Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. ChemBioChem 3:619–627

    Article  CAS  PubMed  Google Scholar 

  • Chai YJ, Cui CB, Li CW, Hua W (2011) Antitumor metabolites newly produced by a gentamicin-resistant mutant of Penicillium purpurogenum G59. J Int Pharm Res 38:216–222

    CAS  Google Scholar 

  • Chai YJ, Cui CB, Li CW, Wu CJ, Tian CK, Hua W (2012) Activation of the dormant secondary metabolite production by introducing gentamicin-resistance in a marine-derived Penicillium purpurogenum G59. Mar Drugs 10:559–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cichewicz RH, Henrikson JC, Wang X, Branscum KM (2010) Strategies for accessing microbial secondary metabolites from silent biosynthetic pathways. In: Baltz RH, Davies JE, Demain AL, Bull AT, Junker B, Katz L, Lynd LR, Masurekar PC, Reeves D, Zhao H (eds) Manual of industrial microbiology and biotechnology. ASM Press, Washington, pp 78–95

    Google Scholar 

  • Cui CB (2010) A new approach for exploiting microbial new strain resources for drug screening. J Int Pharm Res 37:1–7

    Google Scholar 

  • Dong Y, Cui CB, Li CW, Hua W, Wu CJ, Zhu TJ, Gu QQ (2014) Activation of dormant secondary metabolite production by introducing neomycin resistance into the deep-sea fungus, Aspergillus versicolor ZBY-3. Mar Drugs 12:4326–4352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edagwa BJ, Taylor CM (2009) Peptides containing γ, δ-dihydroxy-l-leucine. J Org Chem 74:4132–4136

    Article  CAS  PubMed  Google Scholar 

  • Fang SM, Cui CB, Li CW, Wu CJ, Zhang ZJ, Li L, Huang XJ, Ye WC (2012) Purpurogemutantin and purpurogemutantidin, new drimenyl cyclohexenone derivatives produced by a mutant obtained by diethyl sulfate mutagenesis of a marine-derived Penicillium purpurogenum G59. Mar Drugs 10:1266–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang SM, Wu CJ, Li CW, Cui CB (2014) A practical strategy to discover new antitumor compounds by activating silent metabolite production in fungi by diethyl sulphate mutagenesis. Mar Drugs 12:1788–1814

    Article  PubMed  PubMed Central  Google Scholar 

  • Fdhila F, Vázquez V, Sánchez JL, Riguera R (2003) dd-Diketopiperazines: antibiotics active against Vibrio anguillarum isolated from marine bacteria associated with cultures of Pecten maximus. J Nat Prod 66:1299–1301

    Article  CAS  PubMed  Google Scholar 

  • Fu P, Jamison M, La S, MacMillan JB (2014) Inducamides A–C, chlorinated alkaloids from an RNA polymerase mutant strain of Streptomyces sp. Org Lett 16:5656–5659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furukawa T, Akutagawa T, Funatani H, Uchida T, Hotta Y, Niwa M, Takaya Y (2012) Cyclic dipeptides exhibit potency for scavenging radicals. Bioorg Med Chem 20:2002–2009

    Article  CAS  PubMed  Google Scholar 

  • Gondry M, Lautru S, Fusai G, Munier G, Ménez A, Genet R (2001) Cyclic dipeptide oxidase from Streptomyces noursei isolation, purification and partial characterization of a novel, amino acyl α, β-dehydrogenase. Eur J Biochem 268:1712–1721

    Article  CAS  PubMed  Google Scholar 

  • Gondry M, Seuguet L, Belin P, Thai R, Amouroux R, Tellier C, Tuphile K, Jacquet M, Braud S, Courcon M, Masson C, Dubois S, Lautru S, Lecoq A, Hashimoto SI, Genet R, Pernodet JL (2009) Cyclodipeptide synthases are a family of tRNA-dependent peptide bond-forming enzymes. Nat Chem Biol 5:414–420

    Article  CAS  PubMed  Google Scholar 

  • Henrikson JC, Hoover AR, Joyner PM, Cichewicz RH (2009) A chemical epigenetics approach for engineering the in situ biosynthesis of a cryptic natural product from Aspergillus niger. Org Biomol Chem 7:435–438

    Article  CAS  PubMed  Google Scholar 

  • Hosaka T, Ohnishi-Kameyama M, Muramatsu H, Murakami K, Tsurumi Y, Kodani S, Yoshida M, Fujie A, Ochi K (2009) Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. Nat Biotechnol 27:462–464

    Article  CAS  PubMed  Google Scholar 

  • Huang R, Zhou X, Xu T, Yang X, Liu Y (2010) Diketopiperazines from marine organisms. Chem Biodivers 7:2809–2829

    Article  CAS  PubMed  Google Scholar 

  • Jayatilake GS, Thornton MP, Leonard AC, Grimwade JE, Baker BJ (1996) Metabolites from an Antarctic sponge-associated bacterium, Pseudomonas aeruginosa. J Nat Prod 59:293–296

    Article  CAS  PubMed  Google Scholar 

  • Jia JM, Ma XC, Wu CF, Wu LJ, Hu GS (2005) Cordycedipeptide A, a new cyclodipeptide from the culture liquid of Cordyceps sinensis (Berk.) Sacc. Chem Pharm Bull 53:582–583

    Article  CAS  PubMed  Google Scholar 

  • Kanzaki H, Imura D, Nitoda T, Kawazu K (2000) Effective production of dehydro cyclic dipeptide albonoursin exhibiting pronuclear fusion inhibitory activity II. Biosynthetic and bioconversion studies. J Antibiot 53:58–62

    Article  CAS  PubMed  Google Scholar 

  • Lahoud G, Hou YM (2010) Biosynthesis: a new (old) way of hijacking tRNA. Nat Chem Biol 6:795–796

    Article  CAS  PubMed  Google Scholar 

  • Marmann A, Aly AH, Lin W, Wang B, Proksch P (2014) Co-cultivation—a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar Drugs 12:1043–1065

    Article  PubMed  PubMed Central  Google Scholar 

  • Martins MB, Carvalho I (2007) Diketopiperazines: biological activity and synthesis. Tetrahedron 63:9923–9932

    Article  CAS  Google Scholar 

  • Ochi K (2007) From microbial differentiation to ribosome engineering. Biosci Biothenol Biochem 71:1373–1386

    Article  CAS  Google Scholar 

  • Ochi K, Hosaka T (2013) New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl Microbiol Biotechnol 97:87–98

    Article  CAS  PubMed  Google Scholar 

  • Ochi K, Okamoto S, Tozawa Y, Inaoka T, Hosaka T, Xu J, Kurosawa K (2004) Ribosome engineering and secondary metabolite production. Adv Appl Microbiol 56:155–184

    Article  CAS  PubMed  Google Scholar 

  • Pedras MSC, Yu Y, Liu J, Tandron-Moya YA (2005) Metabolites produced by the phytopathogenic fungus Rhizoctonia solani: isolation, chemical structure determination, syntheses and bioactivity. Z Naturforsch C 60:717–722

    Article  CAS  PubMed  Google Scholar 

  • Takaya Y, Furukawa T, Miura S, Akutagawa T, Hotta Y, Ishikawa N, Niwa M (2007) Antioxidant constituents in distillation residue of Awamori spirits. J Agric Food Chem 55:75–79

    Article  CAS  PubMed  Google Scholar 

  • Teixidó M, Zurita E, Malakoutikhah M, Tarrago T, Giralt E (2007) Diketopiperazines as a tool for the study of transport across the blood–brain barrier (BBB) and their potential use as BBB-shuttles. J Am Chem Soc 129:11802–11813

    Article  PubMed  Google Scholar 

  • Tian CK, Cui CB, Han XX (2008) Isolation of fungal strains in unusual environment and screening for their antitumor activity. J Int Pharm Res 35:401–405

    Google Scholar 

  • Wu CJ, Cui CB, Tian CK, Li CW (2010) Antitumor metabolites produced by two Penicillium purpurogenum G59 mutants. J Int Pharm Res 37:122–126

    CAS  Google Scholar 

  • Wu CJ, Li CW, Cui CB (2014) Seven new and two known lipopeptides as well as five known polyketides: the activated production of silent metabolites in a marine-derived fungus by chemical mutagenesis strategy using diethyl sulphate. Mar Drugs 12:1815–1838

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu CJ, Yi L, Cui CB, Li CW, Wang N, Han X (2015) Activation of the silent secondary metabolite production by introducing neomycin-resistance in a marine-derived Penicillium purpurogenum G59. Mar Drugs 13:2465–2487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia MW, Cui CB, Li CW, Wu CJ (2014) Three new and eleven known unusual C25 steroids: activated production of silent metabolites in a marine-derived fungus by chemical mutagenesis strategy using diethyl sulphate. Mar Drugs 12:1545–1568

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia MW, Cui CB, Li CW, Wu CJ, Peng JX, Li DH (2015) Rare chromones from a fungal mutant of the marine-derived Penicillium purpurogenum G59. Mar Drugs 13:5219–5236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grants from the NSFC (81573300, 30973631), NHTRDP (2013AA092901, 2007AA09Z411), NSTMP (2009ZX09301-002, 2012ZX09301-003) and AMMS (2008), China, and the NSFC-Shandong Joint Fund for Marine Science Research Centers (U1406402), China. Penicillium purpurogenum G59 was identified by Prof. Liang-Dong Guo, the Institute of Microbiology, Chinese Academy of Sciences, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Bin Cui.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Cui, CB. & Li, CW. A new cyclic dipeptide penicimutide: the activated production of cyclic dipeptides by introduction of neomycin-resistance in the marine-derived fungus Penicillium purpurogenum G59. Arch. Pharm. Res. 39, 762–770 (2016). https://doi.org/10.1007/s12272-016-0751-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-016-0751-7

Keywords

Navigation