Skip to main content
Log in

A major role for microRNAs in glioblastoma cancer stem-like cells

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Studies have demonstrated that miRNAs contribute to the maintenance and phenotype of in several cancer types. This review will focus on the roles of a few well studied miRNAs in cancer stem-like cells of glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alrfaei, B.M., R. Vemuganti, and J.S. Kuo. 2013. microRNA-100 targets SMRT/NCOR2, reduces proliferation, and improves survival in glioblastoma animal models. PLoS ONE 8: e80865.

    PubMed Central  PubMed  Google Scholar 

  • Bier, A., N. Giladi, N. Kronfeld, H.K. Lee, S. Cazacu, S. Finniss, C. Xiang, L. Poisson, A.C. deCarvalho, S. Slavin, E. Jacoby, M. Yalon, A. Toren, T. Mikkelsen, and C. Brodie. 2013. MicroRNA-137 is downregulated in glioblastoma and inhibits the stemness of glioma stem cells by targeting RTVP-1. Oncotarget 4: 665–676.

    PubMed Central  PubMed  Google Scholar 

  • Bruggeman, S.W., D. Hulsman, E. Tanger, T. Buckle, M. Blom, J. Zevenhoven, O. Van Tellingen, and M. Van Lohuizen. 2007. Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. Cancer Cell 12: 328–341.

    CAS  PubMed  Google Scholar 

  • Carro, M.S., W.K. Lim, M.J. Alvarez, R.J. Bollo, X. Zhao, E.Y. Snyder, E.P. Sulman, S.L. Anne, F. Doetsch, H. Colman, A. Lasorella, K. Aldape, A. Califano, and A. Iavarone. 2010. The transcriptional network for mesenchymal transformation of brain tumours. Nature 463: 318–325.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chan, J.A., A.M. Krichevsky, and K.S. Kosik. 2005. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Research 65: 6029–6033.

    CAS  PubMed  Google Scholar 

  • Chan, X.H., S. Nama, F. Gopal, P. Rizk, S. Ramasamy, G. Sundaram, G.S. Ow, A.V. Ivshina, V. Tanavde, J. Haybaeck, V. Kuznetsov, and P. Sampath. 2012. Targeting glioma stem cells by functional inhibition of a prosurvival oncomiR-138 in malignant gliomas. Cell Reports 2: 591–602.

    CAS  PubMed  Google Scholar 

  • Chaudhry, M.A., H. Sachdevam, and R.A. Omaruddin. 2010. Radiation-induced micro-RNA modulation in glioblastoma cells differing in DNA-repair pathways. DNA and Cell Biology 29: 553–561.

    CAS  PubMed  Google Scholar 

  • Chen, G., W. Zhu, D. Shi, L. Lv, C. Zhang, P. Liu, and W. Hu. 2010. MicroRNA-181a sensitizes human malignant glioma U87MG cells to radiation by targeting Bcl-2. Onclogy Reports 23: 997–1003.

    CAS  Google Scholar 

  • Ciafrè, S.A., S. Galardi, A. Mangiola, M. Ferracin, C.G. Liu, G. Sabatino, M. Negrini, G. Maira, C.M. Croce, and M.G. Farace. 2005. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochemical and Biophysical Research Communications 334: 1351–1358.

    PubMed  Google Scholar 

  • Conti, A., M. Aguennouz, D. La Torre, C. Tomasello, S. Cardali, F.F. Angileri, F. Maio, A. Cama, A. Germanò, G. Vita, and F. Tomasello. 2009. miR-21 and 221 upregulation and miR-181b downregulation in human grade II-IV astrocytic tumors. Journal of Neurooncology 93: 325–332.

    CAS  Google Scholar 

  • Cooper, L.A., D.A. Gutman, Q. Long, B.A. Johnson, S.R. Cholleti, T. Kurc, J.H. Saltz, D.J. Brat, and C.S. Moreno. 2010. The proneural molecular signature is enriched in oligodendrogliomas and predicts improved survival among diffuse gliomas. PLoS ONE 5: e12548.

    PubMed Central  PubMed  Google Scholar 

  • Corsten, M.F., R. Miranda, R. Kasmieh, A.M. Krichevsky, R. Weissleder, and K. Shah. 2007. MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Research 67: 8994–9000.

    CAS  PubMed  Google Scholar 

  • Cortez, M.A., M.S. Nicoloso, M. Shimizu, S. Rossi, G. Gopisetty, J.R. Molina, C. Carlotti Jr, D. Tirapelli, L. Neder, M.S. Brassesco, C.A. Scrideli, L.G. Tone, M.M. Georgescu, W. Zhang, V. Puduvalli, and G.A. Calin. 2010. miR-29b and miR-125a regulate podoplanin and suppress invasion in glioblastoma. Genes, Chromosomes and Cancer 49: 981–990.

    CAS  PubMed  Google Scholar 

  • Deng, X., L. Ma, M. Wu, G. Zhang, C. Jin, Y. Guo, and R. Liu. 2013. miR-124 radiosensitizes human glioma cells by targeting CDK4. Journal of Neurooncology 114: 263–274.

    CAS  Google Scholar 

  • Dews, M., J.L. Fox, S. Hultine, P. Sundaram, W. Wang, Y.Y. Liu, E. Furth, G.H. Enders, W. El-Deiry, J.M. Schelter, M.A. Cleary, and A. Thomas-Tikhonenko. 2010. The myc-miR-17 ~ 92 axis blunts TGF{beta} signaling and production of multiple TGF{beta}-dependent antiangiogenic factors. Cancer Research 70: 8233–8246.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dong, H., H. Siu, L. Luo, X. Fang, L. Jin, and M. Xiong. 2010. Investigation gene and microRNA expression in glioblastoma. BMC Genomics 11(Suppl 3): S16.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dong, Q., N. Cai, T. Tao, R. Zhang, W. Yan, R. Li, J. Zhang, H. Luo, Y. Shi, W. Luan, Y. Zhang, Y. You, Y. Wang, and N. Liu. 2014. An axis involving SNAI1, microRNA-128 and SP1 modulates glioma progression. PLoS ONE 9: e98651.

    PubMed Central  PubMed  Google Scholar 

  • Ernst, A., B. Campos, J. Meier, F. Devens, F. Liesenberg, M. Wolter, G. Reifenberger, C. Herold-Mende, P. Lichter, and B. Radlwimmer. 2010. De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioblastoma spheroid cultures. Oncogene 29: 3411–3422.

    CAS  PubMed  Google Scholar 

  • Fareh, M., L. Turchi, V. Virolle, D. Debruyne, F. Almairac, S. De-La-Forest Divonne, P. Paquis, O. Preynat-Seauve, K.H. Krause, H. Chneiweiss, and T. Virolle. 2012. The miR 302-367 cluster drastically affects self-renewal and infiltration properties of glioma-initiating cells through CXCR4 repression and consequent disruption of the SHH-GLI-NANOG network. Cell Death and Differentiation 19: 232–244.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Farrell, C., H. Crimm, P. Meeh, R. Croshaw, T. Barbar, J.J. Vandersteenhoven, W. Butler, and P. Buckhaults. 2008. Somatic mutations to CSMD1 in colorectal adenocarcinomas. Cancer Biology & Therapy 7: 609–613.

    CAS  Google Scholar 

  • Ferrarese, R., G.R.T. Harsh, A.K. Yadav, E. Bug, D. Maticzka, W. Reichardt, S.M. Dombrowski, T.E. Miller, A.P. Masilamani, F. Dai, H. Kim, M. Hadler, D.M. Scholtens, I.L. Yu, J. Beck, V. Srinivasasainagendra, F. Costa, N. Baxan, D. Pfeifer, D. Von Elverfeldt, R. Backofen, A. Weyerbrock, C.W. Duarte, X. He, M. Prinz, J.P. Chandler, H. Vogel, A. Chakravarti, J.N. Rich, M.S. Carro, and M. Bredel. 2014. Lineage-specific splicing of a brain-enriched alternative exon promotes glioblastoma progression. The Journal of Clinical Investigation 124: 2861–2876.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fu, J., M. Rodova, R. Nanta, D. Meeker, P.J. Van Veldhuizen, R.K. Srivastava, and S. Shankar. 2013. NPV-LDE-225 (Erismodegib) inhibits epithelial mesenchymal transition and self-renewal of glioblastoma initiating cells by regulating miR-21, miR-128, and miR-200. Neuro-oncology 15: 691–706.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gabriely, G., T. Wurdinger, S. Kesari, C.C. Esau, J. Burchard, P.S. Linsley, and A.M. Krichevsky. 2008. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Molecular and Cellular Biology 28: 5369–5380.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gal, H., G. Pandi, A.A. Kanner, Z. Ram, G. Lithwick-Yanai, N. Amariglio, G. Rechavi, and D. Givol. 2008. MIR-451 and Imatinib mesylate inhibit tumor growth of Glioblastoma stem cells. Biochemical and Biophysical Research Communications 376: 86–90.

    CAS  PubMed  Google Scholar 

  • Ge, Y.F., J. Sun, C.J. Jin, B.Q. Cao, Z.F. Jiang, and J.F. Shao. 2013. AntagomiR-27a targets FOXO3a in glioblastoma and suppresses U87 cell growth in vitro and in vivo. Asian Pacific Journal of Cancer Prevention 14: 963–968.

    PubMed  Google Scholar 

  • Genovese, G., A. Ergun, S.A. Shukla, B. Campos, J. Hanna, P. Ghosh, S.N. Quayle, K. Rai, S. Colla, H. Ying, C.J. Wu, S. Sarkar, Y. Xiao, J. Zhang, H. Zhang, L. Kwong, K. Dunn, W.R. Wiedemeyer, C. Brennan, H. Zheng, D.L. Rimm, J.J. Collins, and L. Chin. 2012. microRNA regulatory network inference identifies miR-34a as a novel regulator of TGF-β signaling in glioblastoma. Cancer Discovery 2: 736–749.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gilbertson, R.J., and J.N. Rich. 2007. Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nature Reviews Cancer 7: 733–736.

    CAS  PubMed  Google Scholar 

  • Godlewski, J., M.O. Nowicki, A. Bronisz, G. Nuovo, J. Palatini, M. De Lay, J. Van Brocklyn, M.C. Ostrowski, E.A. Chiocca, and S.E. Lawler. 2010. MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Molecular Cell 37: 620–632.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Godlewski, J., M.O. Nowicki, A. Bronisz, S. Williams, A. Otsuki, G. Nuovo, A. Raychaudhury, H.B. Newton, E.A. Chiocca, and S. Lawler. 2008. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Research 68: 9125–9130.

    CAS  PubMed  Google Scholar 

  • Gomez, G.G., S. Volinia, C.M. Croce, C. Zanca, M. Li, R. Emnett, D.H. Gutmann, C.W. Brennan, F.B. Furnari, and W.K. Cavenee. 2014. Suppression of microRNA-9 by mutant EGFR signaling upregulates FOXP1 to enhance glioblastoma tumorigenicity. Cancer Research 74: 1429–1439.

    CAS  PubMed  Google Scholar 

  • Guan, Y., M. Mizoguchi, K. Yoshimoto, N. Hata, T. Shono, S.O. Suzuki, Y. Araki, D. Kuga, A. Nakamizo, T. Amano, X. Ma, K. Hayashi, and T. Sasaki. 2010. MiRNA-196 is upregulated in glioblastoma but not in anaplastic astrocytoma and has prognostic significance. Clinical Cancer Research 16: 4289–4297.

    CAS  PubMed  Google Scholar 

  • Guessous, F., M. Alvarado-Velez, L. Marcinkiewicz, Y. Zhang, J. Kim, S. Heister, B. Kefas, J. Godlewski, D. Schiff, B. Purow, and R. Abounader. 2013. Oncogenic effects of miR-10b in glioblastoma stem cells. Journal of Neuro-oncology 112: 153–163.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guessous, F., Y. Zhang, A. Kofman, A. Catania, Y. Li, D. Schiff, B. Purow, and R. Abounader. 2010. microRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell Cycle 9: 1031–1036.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hu, X., D. Chen, Y. Cui, Z. Li, and J. Huang. 2013. Targeting microRNA-23a to inhibit glioma cell invasion via HOXD10. Scientific Reports 3: 3423.

    PubMed Central  PubMed  Google Scholar 

  • Huse, J.T., C. Brennan, D. Hambardzumyan, B. Wee, J. Pena, S.H. Rouhanifard, C. Sohn-Lee, C. le Sage, R. Agami, T. Tuschl, and E.C. Holland. 2009. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes & Development 23: 1327.

    CAS  Google Scholar 

  • Jeffries, C.D., H.M. Fried, and D.O. Perkins. 2011. Nuclear and cytoplasmic localization of neural stem cell microRNAs. RNA 17: 675–686.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang, L., P. Mao, L. Song, J. Wu, J. Huang, C. Lin, J. Yuan, L. Qu, S.Y. Cheng, and J. Li. 2010. miR-182 as a prognostic marker for glioma progression and patient survival. American Journal of Pathology 177: 29–38.

    PubMed Central  PubMed  Google Scholar 

  • Katakowski, M., X. Zheng, F. Jiang, T. Rogers, A. Szalad, and M. Chopp. 2010. MiR-146b-5p suppresses EGFR expression and reduces in vitro migration and invasion of glioma. Cancaer Investigation 28: 1024–1030.

    CAS  Google Scholar 

  • Katsushima, K., K. Shinjo, A. Natsume, F. Ohka, M. Fujii, H. Osada, Y. Sekido, and Y. Kondo. 2012. Contribution of microRNA-1275 to Claudin11 protein suppression via a polycomb-mediated silencing mechanism in human glioma stem-like cells. Journal of Biological Chemistry 287: 27396–27406.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kefas, B., J. Godlewski, L. Comeau, Y. Li, R. Abounader, M. Hawkinson, J. Lee, H. Fine, E.A. Chiocca, S. Lawler, and B. Purow. 2008. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Research 68: 3566–3572.

    CAS  PubMed  Google Scholar 

  • Kefas, B., L. Comeau, D.H. Floyd, O. Seleverstov, J. Godlewski, T. Schmittgen, J. Jiang, C.G. diPierro, Y. Li, E.A. Chiocca, J. Lee, H. Fine, R. Abounader, S. Lawler, and B. Purow. 2009. The neuronal microRNA miR-326 acts in a feedback loop with notch and has therapeutic potential against brain tumors. Journal of Neuroscience 29: 15161–15168.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kefas, B., L. Comeau, N. Erdle, E. Montgomery, S. Amos, and B. Purow. 2010. Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. Neuro-Oncology 12: 1102–1112.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim, H., W. Huang, X. Jiang, B. Pennicooke, P.J. Park, and M.D. Johnson. 2010. Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proceedings of the National Academy of Sciences 107: 2183–2188.

    CAS  Google Scholar 

  • Kim, J., Y. Zhang, M. Skalski, J. Hayes, B. Kefas, D. Schiff, B. Purow, S. Parsons, S. Lawler, and R. Abounader. 2014. microRNA-148a is a prognostic oncomiR that targets MIG6 and BIM to regulate EGFR and apoptosis in glioblastoma. Cancer Research 74(5): 1541–1553.

    CAS  PubMed  Google Scholar 

  • Kim, T.M., W. Huang, R. Park, P.J. Park, and M.D. Johnson. 2011. A developmental taxonomy of glioblastoma defined and maintained by MicroRNAs. Cancer Research 71: 3387–3399.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krichevsky, A.M., K.C. Sonntag, O. Isacson, and K.S. Kosik. 2006. Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24: 857–864.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lages, E., A. Guttin, M. El Atifi, C. Ramus, H. Ipas, I. Dupré, D. Rolland, C. Salon, C. Godfraind, F. deFraipont, M. Dhobb, L. Pelletier, D. Wion, E. Gay, F. Berger, and J.P. Issartel. 2011. MicroRNA and target protein patterns reveal physiopathological features of glioma subtypes. PLoS ONE 6: e20600.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lang, M.F., S. Yang, C. Zhao, G. Sun, K. Murai, X. Wu, J. Wang, H. Gao, C.E. Brown, X. Liu, J. Zhou, L. Peng, J.J. Rossi, and Y. Shi. 2012. Genome-wide profiling identified a set of miRNAs that are differentially expressed in glioblastoma stem cells and normal neural stem cells. PLoS ONE 7: e36248.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lavon, I., D. Zrihan, A. Granit, O. Einstein, N. Fainstein, M.A. Cohen, M.A. Cohen, B. Zelikovitch, Y. Shoshan, S. Spektor, B.E. Reubinoff, Y. Felig, O. Gerlitz, T. Ben-Hur, Y. Smith, and T. Siegal. 2010. Gliomas display a microRNA expression profile reminiscent of neural precursor cells. Neuro-Oncology 12: 422–433.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee, H.K., S. Finniss, S. Cazacu, E. Bucris, A. Ziv-Av, C. Xiang, K. Bobbitt, S.A. Rempel, L. Hasselbach, T. Mikkelsen, S. Slavin, and C. Brodie. 2013. Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal. Oncotarget 4: 346–361.

    PubMed Central  PubMed  Google Scholar 

  • Lessard, J., and G. Sauvageau. 2003. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423: 255–260.

    CAS  PubMed  Google Scholar 

  • Li, D., P. Chen, X.Y. Li, L.Y. Zhang, W. Xiong, M. Zhou, L. Xiao, F. Zeng, X.L. Li, M.H. Wu, and G.Y. Li. 2011. Grade-specific expression profiles of miRNAs/mRNAs and docking study in human grade I-III astrocytomas. OMICS: A Journal of Integrative Biology 15: 673–682.

    CAS  Google Scholar 

  • Li, Y., F. Guessous, Y. Zhang, C. Dipierro, B. Kefas, E. Johnson, L. Marcinkiewicz, J. Jiang, Y. Yang, T.D. Schmittgen, B. Lopes, D. Schiff, B. Purow, and R. Abounader. 2009a. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Research 69: 7569–7576.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li, Y., W. Li, Y. Yang, Y. Lu, C. He, G. Hu, H. Liu, J. Chen, J. He, and H. Yu. 2009b. MicroRNA-21 targets LRRFIP1 and contributes to VM-26 resistance in glioblastoma multiforme. Brain Research 1286: 13–18.

    CAS  PubMed  Google Scholar 

  • Li, Y., Y. Wang, L. Yu, C. Sun, D. Cheng, S. Yu, Q. Wang, Y. Yan, C. Kang, S. Jin, T. An, C. Shi, J. Xu, C. Wei, J. Liu, J. Sun, Y. Wen, S. Zhao, and Y. Kong. 2013. miR-146b-5p inhibits glioma migration and invasion by targeting MMP16. Cnacer Letters 339: 260–269.

    CAS  Google Scholar 

  • Lian, S., R. Shi, T. Bai, Y. Liu, W. Miao, H. Wang, X. Liu, and Y. Fan. 2013. Anti-miRNA-23a oligonucleotide suppresses glioma cells growth by targeting apoptotic protease activating factor-1. Current Pharmaceutical Design 19: 6382–6389.

    CAS  PubMed  Google Scholar 

  • Ling, N., J. Gu, Z. Lei, M. Li, J. Zhao, H.T. Zhang, and X. Li. 2013. microRNA-155 regulates cell proliferation and invasion by targeting FOXO3a in glioma. Oncology Reports 30: 2111–2118.

    CAS  PubMed  Google Scholar 

  • Liu, S., F. Yin, J. Zhang, M.S. Wicha, A.E. Chang, W. Fan, L. Chen, M. Fan, and Q. Li. 2014. Regulatory roles of miRNA in the human neural stem cell transformation to glioma stem cells. Journal of Cellular Biochemistry 115: 1368–1380.

    CAS  PubMed  Google Scholar 

  • Lobo, N.A., Y. Shimono, D. Qian, and M.F. Clarke. 2007. The biology of cancer stem cells. Annual Review of Cell and Developmental Biology 23: 675–699.

    CAS  PubMed  Google Scholar 

  • Lopez-Bertoni, H., Lal, B., Li, A., Caplan, M., Guerrero-Cazares, H., Eberhart, C. G., Quinones-Hinojosa, A., Glas, M., Scheffler, B., Laterra, J., and Li, Y. DNMT-dependent suppression of microRNA regulates the induction of GBM tumor-propagating phenotype by Oct4 and Sox2. Oncogene (2014).

  • Lu, X., P. Zhao, C. Zhang, Z. Fu, Y. Chen, A. Lu, N. Liu, Y. You, P. Pu, and C. Kang. 2009. Analysis of miR-221 and p27 expression in human gliomas. Molecular Medicine Reports 2: 651.

    CAS  PubMed  Google Scholar 

  • Luan, S., L. Sun, and F. Huang. 2010. MicroRNA-34a: a novel tumor suppressor in p53-mutant glioma cell line U251. Archives of Medical Research 41: 67–74.

    CAS  PubMed  Google Scholar 

  • Lukiw, W.J., J.G. Cui, Y.Y. Li, and F. Culicchia. 2009. Up-regulation of micro-RNA-221 (miRNA-221; chr Xp11.3) and caspase-3 accompanies down-regulation of the survivin-1 homolog BIRC1 (NAIP) in glioblastoma multiforme (GBM). Journal of Neurooncology 91: 27–32.

    CAS  Google Scholar 

  • Makeyev, E.V., J. Zhang, M.A. Carrasco, and T. Maniatis. 2007. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Molecular Cell 27: 435–448.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Malzkorn, B., M. Wolter, F. Liesenberg, M. Grzendowski, K. Stühler, H.E. Meyer, and G. Reifenberger. 2010. Identification and functional characterization of microRNAs involved in the malignant progression of gliomas. Brain Pathology 20: 539–550.

    CAS  PubMed  Google Scholar 

  • Medina, R., S.K. Zaidi, C.G. Liu, J.L. Stein, A.J. van Wijnen, C.M. Croce, and G.S. Stein. 2008. MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. Cancer Research 68: 2773–2780.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mei, J., R. Bachoo, and C.L. Zhang. 2011. MicroRNA-146a inhibits glioma development by targeting Notch1. Molecular and Cellular Biology 31: 3584–3592.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Molofsky, A.V., S. He, M. Bydon, S.J. Morrison, and R. Pardal. 2005. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes & Development 19: 1432–1437.

    CAS  Google Scholar 

  • Ng, W.L., D. Yan, X. Zhang, Y.Y. Mo, and Y. Wang. 2010. Over-expression of miR-100 is responsible for the low-expression of ATM in the human glioma cell line: M059J. DNA Repair 10: 1170.

    Google Scholar 

  • Papagiannakopoulos, T., A. Shapiro, and K.S. Kosik. 2008. MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Research 68: 8164–8172.

    CAS  PubMed  Google Scholar 

  • Papagiannakopoulos, T., D. Friedmann-Morvinski, P. Neveu, J.C. Dugas, R.M. Gill, E. Huillard, C. Liu, H. Zong, D.H. Rowitch, B.A. Barres, I.M. Verma, and K.S. Kosik. 2012. Pro-neural miR-128 is a glioma tumor suppressor that targets mitogenic kinases. Oncogene 31: 1884–1895.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Peruzzi, P., A. Bronisz, M.O. Nowicki, Y. Wang, D. Ogawa, R. Price, I. Nakano, C.H. Kwon, J. Hayes, S.E. Lawler, M.C. Ostrowski, E.A. Chiocca, and J. Godlewski. 2013. MicroRNA-128 coordinately targets Polycomb Repressor Complexes in glioma stem cells. Neuro-Oncology 15: 1212–1224.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Qiu, S., D. Huang, D. Yin, F. Li, X. Li, H.F. Kung, and Y. Peng. 2013. Suppression of tumorigenicity by microRNA-138 through inhibition of EZH2-CDK4/6-pRb-E2F1 signal loop in glioblastoma multiforme. Biochimica et Biophysica Acta 1832: 1697–1707.

    CAS  PubMed  Google Scholar 

  • Quintavalle, C., M. Garofalo, C. Zanca, G. Romano, M. Iaboni, M. De del Basso Caro, J.C. Martinez-Montero, M. Incoronato, G. Nuovo, C.M. Croce, and G. Condorelli. 2012. miR-221/222 overexpession in human glioblastoma increases invasiveness by targeting the protein phosphate PTPμ. Oncogene 31: 858–868.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rao, S.A., V. Santosh, and K. Somasundaram. 2010. Genome-wide expression profiling identifies deregulated miRNAs in malignant astrocytoma. Morden Pathology 23: 1407–1417.

    Google Scholar 

  • Rathod, S.S., S.B. Rani, M. Khan, D. Muzumdar, and A. Shiras. 2014. Tumor suppressive miRNA-34a suppresses cell proliferation and tumor growth of glioma stem cells by targeting Akt and Wnt signaling pathways. FEBS open bio 4: 485–495.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ren, Y., X. Zhou, M. Mei, X.B. Yuan, L. Han, G.X. Wang, Z.F. Jia, P. Xu, P.Y. Pu, and C.S. Kang. 2010. MicroRNA-21 inhibitor sensitizes human glioblastoma cells U251 (PTEN-mutant) and LN229 (PTEN-wild type) to taxol. BMC Cancer 10: 27.

    PubMed Central  PubMed  Google Scholar 

  • Sasayama, T., M. Nishihara, T. Kondoh, K. Hosoda, and E. Kohmura. 2009. MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. International Journal of Cancer 125: 1407–1413.

    CAS  Google Scholar 

  • Sato, F., S. Tsuchiya, S.J. Meltzer, and K. Shimizu. 2011. MicroRNAs and epigenetics. The FEBS Journal 278: 1598–1609.

    CAS  PubMed  Google Scholar 

  • Schraivogel, D., L. Weinmann, D. Beier, G. Tabatabai, A. Eichner, J.Y. Zhu, M. Anton, M. Sixt, M. Weller, C.P. Beier, and G. Meister. 2011. CAMTA1 is a novel tumour suppressor regulated by miR-9/9* in glioblastoma stem cells. The EMBO Journal 30: 4309–4322.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shi, L., J. Chen, J. Yang, T. Pan, S. Zhang, and Z. Wang. 2010. MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity. Brain Research 1352: 255–264.

    CAS  PubMed  Google Scholar 

  • Shi, Z.M., X.F. Wang, X. Qian, T. Tao, L. Wang, Q.D. Chen, X.R. Wang, L. Cao, Y.Y. Wang, J.X. Zhang, T. Jiang, C.S. Kang, B.H. Jiang, N. Liu, and Y.P. You. 2013. MiRNA-181b suppresses IGF-1R and functions as a tumor suppressor gene in gliomas. RNA 19: 552–560.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shu, M., X. Zheng, S. Wu, H. Lu, T. Leng, W. Zhu, Y. Zhou, Y. Ou, X. Lin, Y. Lin, D. Xu, Y. Zhou, and G. Yan. 2011. Targeting oncogenic miR-335 inhibits growth and invasion of malignant astrocytoma cells. Molecular Cancer 10: 59.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Silber, J., D.A. Lim, C. Petritsch, A.I. Persson, A.K. Maunakea, M. Yu, S.R. Vandenberg, D.G. Ginzinger, C.D. James, J.F. Costello, G. Bergers, W.A. Weiss, A. Alvarez-Buylla, and J.G. Hodgson. 2008. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Medicine 6: 14.

    PubMed Central  PubMed  Google Scholar 

  • Silber, J., A. Jacobsen, T. Ozawa, G. Harinath, A. Pedraza, C. Sander, E.C. Holland, and J.T. Huse. 2012. miR-34a repression in proneural malignant gliomas upregulates expression of its target PDGFRA and promotes tumorigenesis. PLoS ONE 7: e33844.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smits, M., J. Nilsson, S.E. Mir, P.M. van der Stoop, E. Hulleman, J.M. Niers, P.C. de Witt Hamer, V.E. Marquez, J. Cloos, A.M. Krichevsky, D.P. Noske, B.A. Tannous, and T. Würdinger. 2010. miR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis. Oncotarget 1: 71–120.

    Google Scholar 

  • Song, L., Q. Huang, K. Chen, L. Liu, C. Lin, T. Dai, C. Yu, Z. Wu, and J. Li. 2010. miR-218 inhibits the invasive ability of glioma cells by direct downregulation of IKK-β. Biochemical and Biophysical Research Communications 402: 135–140.

    CAS  PubMed  Google Scholar 

  • Sun, L., W. Yan, Y. Wang, G. Sun, H. Luo, J. Zhang, X. Wang, Y. You, Z. Yang, and N. Liu. 2011. MicroRNA-10b induces glioma cell invasion by modulating MMP-14 and uPAR expression via HOXD10. Brain Research 1389: 9–18.

    CAS  PubMed  Google Scholar 

  • Sun, J., X. Gong, B. Purow, and Z. Zhao. 2012. Uncovering microRNA and transcription factor mediated regulatory networks in glioblastoma. PLoS Computational Biology 8: e1002488.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sun, Y.C., J. Wang, C.C. Guo, K. Sai, J. Wang, F.R. Chen, Q.Y. Yang, Y.S. Chen, J. Wang, T.S. To, Z.P. Zhang, Y.G. Mu, and Z.P. Chen. 2014. MiR-181b sensitizes glioma cells to teniposide by targeting MDM2. BMC Cnacer 14: 611.

    Google Scholar 

  • Tabatabai, G., and M. Weller. 2011. Glioblastoma stem cells. Cell and Tissue Research 343: 459–465.

    PubMed  Google Scholar 

  • Tan, X., S. Wang, B. Yang, L. Zhu, B. Yin, T. Chao, J. Zhao, J. Yuan, B. Qiang, and X. Peng. 2012. The CREB-miR-9 negative feedback minicircuitry coordinates the migration and proliferation of glioma cells. PLoS ONE 7: e49570.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tang, H., Z. Wang, Q. Liu, X. Liu, M. Wu, and G. Li. 2014. Disturbing miR-182 and -381 inhibits BRD7 transcription and glioma growth by directly targeting LRRC4. PLoS ONE 9: e84146.

    PubMed Central  PubMed  Google Scholar 

  • Teodorczyk, M., and M.H. Schmidt. 2014. Notching on cancer’s door: Notch signaling in brain tumors. Frontiers in Oncology 4: 341.

    PubMed Central  PubMed  Google Scholar 

  • Tian, Y., Y. Nan, L. Han, A. Zhang, G. Wang, Z. Jia, J. Hao, P. Pu, Y. Zhong, and C. Kang. 2012. MicroRNA miR-451 downregulates the PI3K/AKT pathway through CAB39 in human glioma. International Journal of Oncology 40: 1105–1112.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Toomes, C., A. Jackson, K. Maguire, J. Wood, S. Gollin, C. Ishwad, I. Paterson, S. Prime, K. Parkinson, S. Bell, G. Woods, A. Markham, R. Oliver, R. Woodward, P. Sloan, M. Dixon, A. Read, and N. Thakker. 2003. The presence of multiple regions of homozygous deletion at the CSMD1 locus in oral squamous cell carcinoma question the role of CSMD1 in head and neck carcinogenesis. Genes, Chromosomes and Cancer 37: 132–140.

    CAS  PubMed  Google Scholar 

  • Van Meir, E.G., C.G. Hadjipanayis, A.D. Norden, H.K. Shu, P.Y. Wen, and J.J. Olson. 2010. Exciting new advances in neuro-oncology: The avenue to a cure for malignant glioma. CA: A Cancer Journal for Clinicians 60: 166–193.

    Google Scholar 

  • Verhaak, R.G., K.A. Hoadley, E. Purdom, V. Wang, Y. Qi, M.D. Wilkerson, C.R. Miller, L. Ding, T. Golub, J.P. Mesirov, G. Alexe, M. Lawrence, M. O’kelly, P. Tamayo, B.A. Weir, S. Gabriel, W. Winckler, S. Gupta, L. Jakkula, H.S. Feiler, J.G. Hodgson, C.D. James, J.N. Sarkaria, C. Brennan, A. Kahn, P.T. Spellman, R.K. Wilson, T.P. Speed, J.W. Gray, M. Meyerson, G. Getz, C.M. Perou, D.N. Hayes, and Cancer Genome Atlas Research, N. 2010. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17: 98–110.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Visani, M., D. De Biase, G. Marucci, S. Cerasoli, E. Nigrisoli, M.L. Bacchi Reggiani, F. Albani, A. Baruzzi, A. Pession, and P.S. Group. 2014. Expression of 19 microRNAs in glioblastoma and comparison with other brain neoplasia of grades I-III. Molecular Oncology 8: 417–430.

    CAS  PubMed  Google Scholar 

  • Visvader, J.E., and G.J. Lindeman. 2008. Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nature Reviews Cancer 8: 755–768.

    CAS  PubMed  Google Scholar 

  • Vo, D.T., M. Qiao, A.D. Smith, S.C. Burns, A.J. Brenner, and L.O. Penalva. 2011. The oncogenic RNA-binding protein Musashi1 is regulated by tumor suppressor miRNAs. RNA Biology 8: 817–828.

    CAS  PubMed  Google Scholar 

  • Wang, B., F. Sun, N. Dong, Z. Sun, Y. Diao, C. Zheng, J. Sun, Y. Yang, and D. Jiang. 2014a. MicroRNA-7 directly targets insulin-like growth factor 1 receptor to inhibit cellular growth and glucose metabolism in gliomas. Diagnostic Pathology 9: 211.

    PubMed Central  PubMed  Google Scholar 

  • Wang, H., T. Sun, J. Hu, R. Zhang, Y. Rao, S. Wang, R. Chen, R.E. Mclendon, A.H. Friedman, S.T. Keir, D.D. Bigner, Q.J. Li, H. Wang, and X.F. Wang. 2014b. miR-33a promotes glioma-initiating cell self-renewal via PKA and NOTCH pathways. The Journal of Clinical Investigation 124: 4489–4502.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang, J., K. Sai, F.R. Chen, and Z.P. Chen. 2013. miR-181b modulates glioma cell sensitivity to temozolomide by targeting MEK1. Cancer Chemotherapy and Pharmacology 72: 147–158.

    CAS  PubMed  Google Scholar 

  • Wang, L., M. Shi, S. Hou, B. Ding, L. Liu, X. Ji, J. Zhang, and Y. Deng. 2012. MiR-483-5p suppresses the proliferation of glioma cells via directly targeting ERK1. FEBS Letters 568: 1312–1317.

    Google Scholar 

  • Wang, X.F., Shi, Z.M., Wang, X.R., Cao, L., Wang, Y.Y., Zhang, J.X., Yin, Y., Luo, H., Kang, C.S., Liu, N., Jiang, T., and You, Y.P. 2012. MiR-181d acts as a tumor suppressor in glioma by targeting K-ras and Bcl-2.

  • Wu, D.G., Y.Y. Wang, L.G. Fan, H. Luo, B. Han, L.H. Sun, X.F. Wang, J.X. Zhang, L. Cao, X.R. Wang, Y.P. You, and N. Liu. 2011. MicroRNA-7 regulates glioblastoma cell invasion via targeting focal adhesion kinase expression. Chinese Medical Journal 124: 2616–2621.

    CAS  PubMed  Google Scholar 

  • Wu, N., L. Xiao, X. Zhao, J. Zhao, J. Wang, F. Wang, S. Cao, and X. Lin. 2012. miR-125b regulates the proliferation of glioblastoma stem cells by targeting E2F2. FEBS Letters 586: 3831–3839.

    CAS  PubMed  Google Scholar 

  • Wuchty, S., D. Arjona, A. Li, Y. Kotliarov, J. Walling, S. Ahn, A. Zhang, D. Maric, R. Anolik, J.C. Zenklusen, and H.A. Fine. 2011. Prediction of associations between microRNAs and gene expression in glioma biology. PLos One 6: e14681.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xia, H., W.K. Cheung, S.S. Ng, X. Jiang, S. Jiang, J. Sze, G.K. Leung, G. Lu, D.T. Chan, X.W. Bian, H.F. Kung, W.S. Poon, and M.C. Lin. 2012. Loss of brain-enriched miR-124 microRNA enhances stem-like traits and invasiveness of glioma cells. The Journal of Biological Chemistry 287: 9962–9971.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xia, H.F., T.Z. He, C.M. Liu, Y. Cui, P.P. Song, X.H. Jin, and X. Ma. 2009. MiR-125b expression affects the proliferation and apoptosis of human glioma cells by targeting Bmf. Cellular Physiology and Biochemistry 23: 347–358.

    CAS  PubMed  Google Scholar 

  • Xu, J., X. Liao, and C. Wong. 2010. Downregulations of B-cell lymphoma 2 and myeloid cell leukemia sequence 1 by microRNA 153 induce apoptosis in a glioblastoma cell line DBTRG-05MG. International Journal of Cancer 126: 1029–1035.

    CAS  Google Scholar 

  • Xu, J., X. Liao, N. Lu, W. Liu, and C.W. Wong. 2011. Chromatin-modifying drugs induce miRNA-153 expression to suppress Irs-2 in glioblastoma cell lines. International Journal of Cancer 129: 2527–2531.

    CAS  Google Scholar 

  • Yang, H.W., L.G. Menon, P.M. Black, R.S. Carroll, and M.D. Johnson. 2010. SNAI2/Slug promotes growth and invasion in human gliomas. BMC Cancer 10: 301.

    PubMed Central  PubMed  Google Scholar 

  • Yin, F., J.N. Zhang, S.W. Wang, C.H. Zhou, M.M. Zhao, W.H. Fan, M. Fan, and S. Liu. 2015. MiR-125a-3p regulates glioma apoptosis and invasion by regulating Nrg1. PLoS ONE 10: e0116759.

    PubMed Central  PubMed  Google Scholar 

  • Ying, Z., Li, Y., Wu, J., Zhu, X., Yang, Y., Tian, H., Li, W., Hu, B., Cheng, S.Y., and  L,i M. 2013. Loss of miR-204 expression enhances glioma migration and stem cell-like phenotype. Cancer Research 73: 990–9.

  • Zhang, C.Z., J.X. Zhang, A.L. Zhang, Z.D. Shi, L. Han, Z.F. Jia, W.D. Yang, G.X. Wang, T. Jiang, Y.P. You, P.Y. Pu, J.Q. Cheng, and C.S. Kang. 2010a. MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Molecular Cancer 9: 229.

    PubMed Central  PubMed  Google Scholar 

  • Zhang, J., L. Han, Y. Ge, X. Zhou, A. Zhang, C. Zhang, Y. Zhong, Y. You, P. Pu, and C. Kang. 2010b. miR-221/222 promote malignant progression of glioma through activation of the Akt pathway. (International. Journal of Oncology 36: 913–920.

    CAS  Google Scholar 

  • Zhang, Z., H. Tang, Z. Wang, B. Zhang, W. Liu, H. Lu, L. Xiao, X. Liu, R. Wang, X. Li, M. Wu, and G. Li. 2011. MiR-185 targets the DNA methyltransferases 1 and regulates global DNA methylation in human glioma. Molecular Cancer 10: 124.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou, J., W. Wang, Z. Gao, X. Peng, X. Chen, W. Chen, W. Xu, H. Xu, M.C. Lin, and S. Jiang. 2013. MicroRNA-155 promotes glioma cell proliferation via the regulation of MXI1. PLoS ONE 8: e83055.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wei Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H.W., Xing, H. & Johnson, M.D. A major role for microRNAs in glioblastoma cancer stem-like cells. Arch. Pharm. Res. 38, 423–434 (2015). https://doi.org/10.1007/s12272-015-0574-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-015-0574-y

Keywords

Navigation