Skip to main content
Log in

Gene expression profiling in the striatum of amphetamine-treated spontaneously hypertensive rats which showed amphetamine conditioned place preference and self-administration

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Attention-deficit/hyperactivity disorder (ADHD), the most commonly diagnosed neurobehavioral disorder of childhood, is usually treated with psychostimulants (e.g., amphetamine). Little is known about the neuronal and behavioral consequences of chronic amphetamine use or abuse in individuals with ADHD. Of all ADHD animal models, the spontaneously hypertensive rat (SHR) is the most validated and widely used. Here, we analyzed striatal transcriptomes in amphetamine-pretreated SHRs (5 mg/kg, i.p. for 7 days [twice daily]), which showed a conditioned place preference to and self-administration of amphetamine. Microarray analyses revealed increased mRNA expression of 55 genes (>1.65-fold increase), while 17 genes were downregulated (<0.6-fold) in the striatum of SHRs. The main functional categories overrepresented among the differentially expressed genes in the striatum include those involved in transcription (e.g., Cebpb, Per2), genes associated with angiogenesis (e.g., Kdr, Klf5), cell adhesion (e.g., Col11a1, Ctgf), apoptosis (e.g., Nfkbia, Perp) and neuronal development (e.g., Egr2, Nr4a3). In conclusion, we dissected the striatal transcriptional responses to the reinforcing effects of repeated amphetamine treatment in the SHR model of ADHD. Future studies should determine the influence of these altered transcripts on amphetamine reinforcement in amphetamine-treated SHRs, and the clinical relevance of the present findings with regard to amphetamine use/abuse in ADHD individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andrzejewski, M.E., R.C. Spencer, R.L. Harris, E.C. Feit, B.L. McKee, and C.W. Berridge. 2014. The effects of clinically relevant doses of amphetamine and methylphenidate on signal detection and DRL in rats. Neuropharmacology 79: 634–641.

    Article  CAS  PubMed  Google Scholar 

  • Antle, M.C., H.C. van Diepen, T. Deboer, P. Pedram, R.R. Pereira, and J.H. Meijer. 2012. Methylphenidate modifies the motion of the circadian clock. Neuropsychopharmacology 37(11): 2446–2455.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Attardi, L.D., E.E. Reczek, C. Cosmas, E.G. Demicco, M.E. McCurrach, S.W. Lowe, and T. Jacks. 2000. PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. Genes and Development 14: 704–718.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Beaudry, G., M.C. Langlois, I. Weppe, C. Rouillard, and D. Lévesque. 2000. Contrasting patterns and cellular specificity of transcriptional regulation of the nuclear receptor nerve growth factor-inducible B by haloperidol and clozapine in the rat forebrain. Journal of Neurochemistry 75(4): 1694–1702.

    Article  CAS  PubMed  Google Scholar 

  • Berman, S.M., R. Kuczenski, J.T. McCracken, and E.D. London. 2009. Potential adverse effects of amphetamine treatment on brain and behavior: A review. Molecular Psychiatry 14(2): 123–142.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bronsert, M.R., A.N. Mead, R. Hen, and B.A. Rocha. 2001. Amphetamine-induced locomotor activation in 5-HT(1B) knockout mice: Effects of injection route on acute and sensitized responses. Behavioural Pharmacology 12(6–7): 549–555.

    Article  CAS  PubMed  Google Scholar 

  • Clark, K.H., C.A. Wiley, and C.W. Bradberry. 2013. Psychostimulant abuse and neuroinflammation: Emerging evidence of their interconnection. Neurotoxicity Research 23(2): 174–188.

    Article  CAS  PubMed  Google Scholar 

  • Cortés-Canteli, M., M. Pignatelli, A. Santos, and A. Perez-Castillo. 2002. CCAAT/Enhancer-binding protein β plays a regulatory role in differentiation and apoptosis of neuroblastoma cells. Journal of Biological Chemistry 277(7): 5460–5467.

    Article  PubMed  Google Scholar 

  • dela Peña, I.C., H.S. Ahn, J.Y. Choi, C.Y. Shin, J.H. Ryu, and J.H. Cheong. 2011. Methylphenidate self-administration and conditioned place preference in an animal model of attention-deficit hyperactivity disorder: The spontaneously hypertensive rat. Behavioural Pharmacology 22(1): 31–39.

    Article  Google Scholar 

  • dela Peña, I.C., J.C. Lee, H.L. Lee, T.S. Woo, H.C. Lee, A.R. Sohn, and J.H. Cheong. 2012a. Differential behavioral responses of the spontaneously hypertensive rat to methylphenidate and methamphetamine: Lack of a rewarding effect of repeated methylphenidate treatment. Neuroscience Letters 514(2): 189–193.

    Article  Google Scholar 

  • dela Peña, I.C., S.Y. Yoon, J.C. Lee, J.B. dela Peña, A.R. Sohn, J.H. Ryu, C.Y. Shin, and J.H. Cheong. 2012b. Methylphenidate treatment in the spontaneously hypertensive rat: Influence on methylphenidate self-administration and reinstatement in comparison with Wistar rats. Psychopharmacology (Berlin) 221(2): 217–226.

    Article  Google Scholar 

  • dela Peña, I.C., S.J. Jeon, E. Lee, J.H. Ryu, C.Y. Shin, M. Noh, and J.H. Cheong. 2013. Neuronal development genes are key elements mediating the reinforcing effects of methamphetamine, amphetamine, and methylphenidate. Psychopharmacology (Berlin) 230(3): 399–413.

    Article  Google Scholar 

  • dela Peña, I.C., H.J. Kim, A.R. Sohn, B.N. Kim, D.H. Han, J.H. Ryu, C.Y. Shin, M.S. Noh, and J.H. Cheong. 2014. Prefrontal cortical and striatal transcriptional responses to the reinforcing effect of repeated methylphenidate treatment in spontaneously hypertensive rat, animal model of attention-deficit/hyperactivity disorder (ADHD). Behavioral and Brain Functions 10: 17.

    Article  Google Scholar 

  • Falcon, E., and C.A. McClung. 2009. A role for the circadian genes in drug addiction. Neuropharmacology 56(Suppl 1): 91–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fan, X., K.J. Bruno, and E.J. Hess. 2012. Rodent models of ADHD. Current Topics in Behavioral Neurosciences 9: 273–300.

    Article  PubMed  Google Scholar 

  • Filloux, F., and J. Townsend. 1993. Pre- and postsynaptic neurotoxic effects of dopamine demonstrated by intrastriatal injection. Experimental Neurology 119(1): 79–88.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, M., and R.A. Barkley. 2003. Childhood stimulant treatment and risk for later substance abuse. Journal of Clinical Psychiatry 64(Suppl 11): 19–23.

    CAS  PubMed  Google Scholar 

  • Freeman, W.M., M.E. Lull, K.M. Patel, R.M. Brucklacher, D. Morgan, D.C. Roberts, and K.E. Vrana. 2010. Gene expression changes in the medial prefrontal cortex and nucleus accumbens following abstinence from cocaine self-administration. BMC Neuroscience 11: 29.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gerdeman, G.L., J.G. Partridge, C.R. Lupica, and D.M. Lovinger. 2003. It could be habit forming: Drugs of abuse and striatal synaptic plasticity. Trends in Neurosciences 26(4): 184–192.

    Article  CAS  PubMed  Google Scholar 

  • Groenman, A.P., J. Oosterlaan, N.N. Rommelse, B. Franke, C.U. Greven, P.J. Hoekstra, C.A. Hartman, M. Luman, H. Roeyers, R.D. Oades, J.A. Sergeant, J.K. Buitelaar, and S.V. Faraone. 2013. Stimulant treatment for attention-deficit hyperactivity disorder and risk of developing substance use disorder. British Journal of Psychiatry 203(2): 112–119.

    Article  PubMed  Google Scholar 

  • Harvey, R.C., S. Sen, A. Deaciuc, L.P. Dwoskin, and K.M. Kantak. 2011. Methylphenidate treatment in adolescent rats with an attention deficit/hyperactivity disorder phenotype: Cocaine addiction vulnerability and dopamine transporter function. Neuropsychopharmacology 36: 837–847.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heal, D.J., S.C. Cheetham, and S.L. Smith. 2009. The neuropharmacology of ADHD drugs in vivo: Insights on efficacy and safety. Neuropharmacology 57(7–8): 608–618.

    Article  CAS  PubMed  Google Scholar 

  • Huang, D.W., B.T. Sherman, and R.A. Lempicki. 2008. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 4(1): 44–57.

    Article  Google Scholar 

  • Ironside, S., F. Davidson, and P. Corkum. 2010. Circadian motor activity affected by stimulant medication in children with attention-deficit/hyperactivity disorder. Journal of Sleep Research 19(4): 546–551.

    Article  PubMed  Google Scholar 

  • Iwata, S., M. Nomoto, H. Morioka, and A. Miyata. 2004. Gene expression profiling in the midbrain of striatal 6-hydroxydopamine-injected mice. Synapse 51(4): 279–286.

    Article  CAS  PubMed  Google Scholar 

  • Katusic, S.K., W.J. Barbaresi, R.C. Colligan, A.L. Weaver, C.L. Leibson, and S.J. Jacobsen. 2005. Psychostimulant treatment and risk for substance abuse among young adults with a history of attention-deficit/hyperactivity disorder: A population-based, birth cohort study. Journal of Child and Adolescent Psychopharmacology 15: 764–776.

    Article  PubMed  Google Scholar 

  • Kollins, S.H. 2008a. ADHD, substance use disorders, and psychostimulant treatment: Current literature and treatment guidelines. Journal of Attention Disorders 12(2): 115–125.

    Article  PubMed  Google Scholar 

  • Kollins, S.H. 2008b. A qualitative review of issues arising in the use of psycho-stimulant medications in patients with ADHD and co-morbid substance use disorders. Current Medical Research and Opinion 24: 1345–1357.

    Article  PubMed  Google Scholar 

  • Koob, G.F., and N.D. Volkow. 2010. Neurocircuitry of addiction. Neuropsychopharmacology 35(1): 217–238.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kovacs, K.A., M. Steinmann, P.J. Magistretti, O. Halfon, and J.R. Cardinaux. 2006. C/EBPbeta couples dopamine signalling to substance P precursor gene expression in striatal neurones. Journal of Neurochemistry 98(5): 1390–1399.

    Article  CAS  PubMed  Google Scholar 

  • Koya, E., S. Spijker, P. Voorn, R. Binnekade, E. Schmidt, S. Donne, and N.M. Anton. 2006. Enhanced cortical and accumbal molecular reactivity associated with conditioned heroin, but not sucrose-seeking behaviour. Journal of Neurochemistry 98(3): 905–915.

    Article  CAS  PubMed  Google Scholar 

  • Krasnova, I.N., M.T. McCoy, B. Ladenheim, and J.L. Cadet. 2002. cDNA array analysis of gene expression profiles in the striata of wild-type and Cu/Zn superoxide dismutase transgenic mice treated with neurotoxic doses of amphetamine. FASEB Journal 16: 1379–1388.

    Article  CAS  PubMed  Google Scholar 

  • Lambert, N.M., and C.S. Hartsough. 1998. Prospective study of tobacco smoking and substance dependencies among samples of ADHD and non-ADHD participants. Journal of Learning Disabilities 31(6): 533–544.

    Article  CAS  PubMed  Google Scholar 

  • Lavebratt, C., L.K. Sjöholm, T. Partonen, M. Schalling, and Y. Forsell. 2010. PER2 variantion is associated with depression vulnerability. American Journal of Medical Genetics, Part B: Neuropsychiatric Genetics 153B(2): 570–581.

    CAS  PubMed  Google Scholar 

  • Lévesque, D., and C. Rouillard. 2007. Nur77 and retinoid X receptors: Crucial factors in dopamine-related neuroadaptation. Trends in Neurosciences 30(1): 22–30.

    Article  PubMed  Google Scholar 

  • Liu, Q.R., T. Dragon, C. Johnson, D. Walther, J. Hess, and G.R. Uhl. 2006. Addiction molecular genetics: 639,401 SNP whole genome association identifies many “cell adhesion” genes. American Journal of Medical Genetics, Part B: Neuropsychiatric Genetics 41B(8): 918–925.

    Article  Google Scholar 

  • Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4): 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Mannuzza, S., R.G. Klein, N.L. Truong, J.L. Moulton III, E.R. Roizen, and K.H. Howell. 2008. Age of methylphenidate treatment initiation in children with ADHD and later substance abuse: Prospective follow-up into adulthood. American Journal of Psychiatry 165: 604–609.

    Article  PubMed Central  PubMed  Google Scholar 

  • McClung, C.A., and E.J. Nestler. 2008. Neuroplasticity mediated by altered gene expression. Neuropsychopharmacology 33(1): 3–17.

    Article  CAS  PubMed  Google Scholar 

  • Ménard, C., P. Hein, A. Paquin, A. Savelson, X.M. Yang, and D. Lederfein. 2002. An essential role for a MEK-C/EBP pathway during growth factor-regulated cortical neurogenesis. Neuron 36(4): 597–610.

    Article  PubMed  Google Scholar 

  • Murray, J.B. 1998. Psychophysiological aspects of amphetamine–methamphetamine abuse. Journal of Psychology 132(2): 227–237.

    Article  CAS  PubMed  Google Scholar 

  • Nestler, E.J. 2001. Molecular neurobiology of addiction. American Journal on Addictions 10: 201–217.

    Article  CAS  PubMed  Google Scholar 

  • Robison, A.J., and E.J. Nestler. 2011. Transcriptional and epigenetic mechanisms of addiction. Nature Reviews Neuroscience 12(11): 623–637.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Romanova, E., J.E. Lee, N.L. Kelleher, J.V. Sweedler, and J.M. Gulley. 2012. Comparative peptidomics analysis of neural adaptations in rats repeatedly exposed to amphetamine. Journal of Neurochemistry 123: 276–287.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Russell, V., A. de Villiers, T. Sagvolden, M. Lamm, and J. Taljaard. 1995. Altered dopaminergic function in the prefrontal cortex, nucleus accumbens and caudate-putamen of an animal model of attention-deficit hyperactivity disorder—The spontaneously hypertensive rat. Brain Research 676(2): 343–351.

    Article  CAS  PubMed  Google Scholar 

  • Russell, V.A., T. Sagvolden, and E.B. Johansen. 2005. Animal models of attention-deficit hyperactivity disorder. Behavioral and Brain Functions 1: 9.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sagvolden, T. 2000. Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neuroscience and Biobehavioral Reviews 24: 31–39.

    Article  CAS  PubMed  Google Scholar 

  • Sagvolden, T., V.A. Russell, H. Aase, E.B. Johansen, and M. Farshbaf. 2005. Rodent models of attention-deficit/hyperactivity disorder. Biological Psychiatry 57(11): 1239–1247.

    Article  PubMed  Google Scholar 

  • Sanchis-Segura, C., and R. Spanagel. 2006. Behavioural assessment of drug reinforcement and addictive features in rodents: An overview. Addiction Biology 11(1): 32–38.

    Article  Google Scholar 

  • Spear, L.P., and S.C. Brake. 1983. Periadolescence: Age-dependent behavior and psychopharmacological responsivity in rats. Developmental Psychobiology 16(2): 83–109.

    Article  CAS  PubMed  Google Scholar 

  • Steiner, H., and V. Van Waes. 2013. Addiction-related gene regulation: Risks of exposure to cognitive enhancers vs. other psychostimulants. Progress in Neurobiology 100: 60–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas, D.M., J. Dowgiert, T.J. Geddes, D. Francescutti-Verbeem, X. Liu, and D.M. Kuhn. 2004a. Microglial activation is a pharmacologically specific marker for the neurotoxic amphetamines. Neuroscience Letters 367(3): 349–354.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, D.M., P.D. Walker, J.A. Benjamins, T.J. Geddes, and D.M. Kuhn. 2004b. Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation. Journal of Pharmacology and Experimental Therapeutics 311(1): 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Todd, R.D. 1992. Neural development is regulated by classical neurotransmitters: Dopamine D2 receptor stimulation enhances neurite outgrowth. Biological Psychiatry 31(8): 794–807.

    Article  CAS  PubMed  Google Scholar 

  • von Schantz, M.V. 2008. Phenotypic effects of genetic variability in human clock genes on circadian and sleep parameters. Journal of Genetics 87(5): 513–519.

    Article  Google Scholar 

  • Webb, K.J., W.H. Norton, D. Trümbach, A.H. Meijer, J. Ninkovic, S. Topp, D. Heck, C. Marr, W. Wurst, F.J. Theis, H.P. Spaink, and L. Bally-Cuif. 2009. Zebrafish reward mutants reveal novel transcripts mediating the behavioral effects of amphetamine. Genome Biology 10(7): R81.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilens, T.E., L.A. Adler, J. Adams, S. Sgambati, J. Rotrosen, R. Sawtelle, and S. Fusillo. 2008. Misuse and diversion of stimulants prescribed for ADHD: A systematic review of the literature. Journal of the American Academy of Child and Adolescent Psychiatry 47(1): 21–31.

    Article  PubMed  Google Scholar 

  • Yang, P., A. Behrang, A. Swann, and N. Dafny. 2003. Strain differences in the behavioral responses of male rats to chronically administered methylphenidate. Brain Research 971: 139–152.

    Article  CAS  PubMed  Google Scholar 

  • Yuferov, V., G. Bart, and M.J. Kreek. 2005a. Clock reset for alcoholism. Nature Medicine 11(1): 23–24.

    Article  CAS  PubMed  Google Scholar 

  • Yuferov, V., D. Nielsen, E. Butelman, and M.J. Kreek. 2005b. Microarray studies of psychostimulant-induced changes in gene expression. Addiction Biology 10(1): 101–118.

    Article  CAS  PubMed  Google Scholar 

  • Zetterström, R.H., R. Williams, T. Perlmann, and L. Olson. 1996. Cellular expression of the immediate early transcription factors Nurr1 and NGFI-B suggests a gene regulatory role in several brain regions including the nigrostriatal dopamine system. Molecular Brain Research 41(1–2): 111–120.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Grants from the National Research Foundation of Korea (NRF 2011-0005198) and the Korea Healthcare Technology Research and Development Project, Ministry for Health and Welfare Affairs, Korea (A120013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Hoon Cheong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dela Peña, I., de la Peña, J.B., Kim, BN. et al. Gene expression profiling in the striatum of amphetamine-treated spontaneously hypertensive rats which showed amphetamine conditioned place preference and self-administration. Arch. Pharm. Res. 38, 865–875 (2015). https://doi.org/10.1007/s12272-014-0470-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-014-0470-x

Keywords

Navigation