Skip to main content
Log in

miR-7641 modulates the expression of CXCL1 during endothelial differentiation derived from human embryonic stem cells

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are a class of small noncoding RNAs that negatively regulate gene expression through binding to 3′ untranslated region. We identified and characterized the novel miRNA, miR-7641, in human mesenchymal stem cells. The expression of miR-7641 was downregulated during differentiation from human embryonic stem cells to endothelial cells. The CXCL1, a member of the CXC chemokine family, is known as promoting neovascularization by binding G-protein coupled receptors and is related to endothelial cells biogenesis such as angiogenesis, and it was predicted as target gene of miR-7641 by computerized analysis and the luciferase reporter assay. The miR-7641 significantly suppressed CXCL1 of transcriptional and post-translational levels. These data suggest that miR-7641 might be related with differentiation of human endothelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahn, S.E., S. Kim, K.H. Park, S.H. Moon, H.J. Lee, G.J. Kim, Y.J. Lee, K.Y. Cha, and H.M. Chung. 2006. Primary bone-derived cells induce osteogenic differentiation without exogenous factors in human embryonic stem cells. Biochemical and Biophysical Research Communications 340: 403–408.

    Article  PubMed  CAS  Google Scholar 

  • Ambros, V. 2004. The functions of animal microRNAs. Nature 431: 350–355.

    Article  PubMed  CAS  Google Scholar 

  • Bartel, D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

    Article  PubMed  CAS  Google Scholar 

  • Bartel, D.P. 2009. MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233.

    Article  PubMed  CAS  Google Scholar 

  • Cai, X., C.H. Hagedorn, and B.R. Cullen. 2004. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10: 1957–1966.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C.Z., L. Li, H.F. Lodish, and D.P. Bartel. 2004. MicroRNAs modulate hematopoietic lineage differentiation. Science 303: 83–86.

    Article  PubMed  CAS  Google Scholar 

  • Cho, S.W., S.H. Moon, S.H. Lee, S.W. Kang, J. Kim, J.M. Lim, H.S. Kim, B.S. Kim, and H.M. Chung. 2007. Improvement of postnatal neovascularization by human embryonic stem cell derived endothelial-like cell transplantation in a mouse model of hindlimb ischemia. Circulation 116: 2409–2419.

    Article  PubMed  CAS  Google Scholar 

  • Duffy, S.P., J. Shing, P. Saraon, L.C. Berger, M.V. Eiden, A. Wilde, and C.S. Tailor. 2010. The Fowler syndrome-associated protein FLVCR2 is an importer of heme. Molecular and Cellular Biology 30: 5318–5324.

    Article  PubMed  CAS  Google Scholar 

  • Hneino, M., K. Blirando, V. Buard, G. Tarlet, M. Benderitter, P. Hoodless, A. Francois, and F. Milliat. 2012. The TG-interacting factor TGIF1 regulates stress-induced proinflammatory phenotype of endothelial cells. Journal of Biological Chemistry 287: 38913–38921.

    Article  PubMed  CAS  Google Scholar 

  • Holderfield, M.T., and C.C. Hughes. 2008. Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis. Circulation Research 102: 637–652.

    Article  PubMed  CAS  Google Scholar 

  • Houbaviy, H.B., M.F. Murray, and P.A. Sharp. 2003. Embryonic stem cell-specific MicroRNAs. Developmental Cell 5: 351–358.

    Article  PubMed  CAS  Google Scholar 

  • Hristov, M., A. Zernecke, E.A. Liehn, and C. Weber. 2007. Regulation of endothelial progenitor cell homing after arterial injury. Thrombosis and Haemostasis 98: 274–277.

    PubMed  CAS  Google Scholar 

  • Jakobsson, L., J. Kreuger, K. Holmborn, L. Lundin, I. Eriksson, L. Kjellen, and L. Claesson-Welsh. 2006. Heparan sulfate in trans potentiates VEGFR-mediated angiogenesis. Developmental Cell 10: 625–634.

    Article  PubMed  CAS  Google Scholar 

  • Jones, C.E., and K. Chan. 2002. Interleukin-17 stimulates the expression of interleukin-8, growth-related oncogene-alpha, and granulocyte-colony-stimulating factor by human airway epithelial cells. American Journal of Respiratory Cell and Molecular Biology 26: 748–753.

    PubMed  CAS  Google Scholar 

  • Kane, N.M., L. Howard, B. Descamps, M. Meloni, J. Mcclure, R. Lu, A. Mccahill, C. Breen, R.M. Mackenzie, C. Delles, J.C. Mountford, G. Milligan, C. Emanueli, and A.H. Baker. 2012. Role of microRNAs 99b, 181a, and 181b in the differentiation of human embryonic stem cells to vascular endothelial cells. Stem Cells 30: 643–654.

    Article  PubMed  CAS  Google Scholar 

  • Kawamura, H., X. Li, K. Goishi, L.A. Van Meeteren, L. Jakobsson, S. Cebe-Suarez, A. Shimizu, D. Edholm, K. Ballmer-Hofer, L. Kjellen, M. Klagsbrun, and L. Claesson-Welsh. 2008. Neuropilin-1 in regulation of VEGF-induced activation of p38MAPK and endothelial cell organization. Blood 112: 3638–3649.

    Article  PubMed  CAS  Google Scholar 

  • Krtolica, A., N. Larocque, O. Genbacev, D. Ilic, J.P. Coppe, C.K. Patil, T. Zdravkovic, M. Mcmaster, J. Campisi, and S.J. Fisher. 2011. GROalpha regulates human embryonic stem cell self-renewal or adoption of a neuronal fate. Differentiation 81: 222–232.

    Article  PubMed  CAS  Google Scholar 

  • Lin, S.L., J.D. Miller, and S.Y. Ying. 2006. Intronic microRNA (miRNA). Journal of Biomedicine and Biotechnology 2006: 26818.

    Article  PubMed  Google Scholar 

  • Numasaki, M., M. Watanabe, T. Suzuki, H. Takahashi, A. Nakamura, F. Mcallister, T. Hishinuma, J. Goto, M.T. Lotze, J.K. Kolls, and H. Sasaki. 2005. IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. Journal of Immunology 175: 6177–6189.

    CAS  Google Scholar 

  • Pang, R.W., and R.T. Poon. 2006. Clinical implications of angiogenesis in cancers. Vascular health and risk management 2: 97–108.

    Article  PubMed  Google Scholar 

  • Pao, S.S., I.T. Paulsen, and M.H. Saier Jr. 1998. Major facilitator superfamily. Microbiology and Molecular Biology Reviews 62: 1–34.

    PubMed  CAS  Google Scholar 

  • Pera, M.F., B. Reubinoff, and A. Trounson. 2000. Human embryonic stem cells. Journal of Cell Science 113(Pt 1): 5–10.

    PubMed  CAS  Google Scholar 

  • Saito, T., and P. Saetrom. 2010. MicroRNAs–targeting and target prediction. New Biotechnology 27: 243–249.

    Article  PubMed  CAS  Google Scholar 

  • Sayed, D., and M. Abdellatif. 2011. MicroRNAs in development and disease. Physiological Reviews 91: 827–887.

    Article  PubMed  CAS  Google Scholar 

  • Schraufstatter, I.U., J. Chung, and M. Burger. 2001. IL-8 activates endothelial cell CXCR1 and CXCR2 through Rho and Rac signaling pathways. American Journal of Physiology Lung Cellular and Molecular Physiology 280: L1094–L1103.

    PubMed  CAS  Google Scholar 

  • Shireman, P.K., and W.H. Pearce. 1996. Endothelial cell function: biologic and physiologic functions in health and disease. AJR American Journal of Roentgenology 166: 7–13.

    Article  PubMed  CAS  Google Scholar 

  • Urbich, C., A. Kuehbacher, and S. Dimmeler. 2008. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovascular Research 79: 581–588.

    Article  PubMed  CAS  Google Scholar 

  • Vittet, D., M.H. Prandini, R. Berthier, A. Schweitzer, H. Martin-Sisteron, G. Uzan, and E. Dejana. 1996. Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps. Blood 88: 3424–3431.

    PubMed  CAS  Google Scholar 

  • Wu, F., Z. Yang, and G. Li. 2009. Role of specific microRNAs for endothelial function and angiogenesis. Biochemical and Biophysical Research Communications 386: 549–553.

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka, Y., T. Kaneko, K. Yoshiba, R. Kaneko, N. Yoshiba, Y. Shigetani, J.E. Nor, and T. Okiji. 2012. Expression of angiogenic factors in rat periapical lesions. Journal of Endodontics 38: 313–317.

    Article  PubMed  Google Scholar 

  • Yoo, J.K., J. Kim, S.J. Choi, C.H. Kim, D.R. Lee, H.M. Chung, and J.K. Kim. 2011. The hsa-miR-5739 modulates the endoglin network in endothelial cells derived from human embryonic stem cells. Biochemical and Biophysical Research Communications 415: 258–262.

    Article  PubMed  CAS  Google Scholar 

  • Yoo, J.K., J. Kim, S.J. Choi, H.M. Noh, Y.D. Kwon, H. Yoo, H.S. Yi, H.M. Chung, and J.K. Kim. 2012. Discovery and characterization of novel microRNAs during endothelial differentiation of human embryonic stem cells. Stem cells and development 21: 2049–2057.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) and was funded by the Ministry of Education, Science, and Technology (2012007471).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Woo Sung Son or Jin Kyeoung Kim.

Additional information

J. Ki Yoo and H. Y. Jung contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, J.K., Jung, H.Y., Kim, CH. et al. miR-7641 modulates the expression of CXCL1 during endothelial differentiation derived from human embryonic stem cells. Arch. Pharm. Res. 36, 353–358 (2013). https://doi.org/10.1007/s12272-013-0067-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-013-0067-9

Keywords

Navigation