Skip to main content
Log in

In vitro antiproliferative effects of the indole alkaloid vallesiachotamine on human melanoma cells

  • Research Articles
  • Drug Actions
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

In course of a screening for small molecules presenting potential anticancer properties, a known monoterpene indole alkaloid named vallesiachotamine was isolated from the leaves of Palicourea rigida (Rubiaceae) collected in the Brazilian Cerrado. The structure was determined by spectroscopic methods, mainly 1D- and 2D-NMR and its biological activities were investigated on cultured human (SK-MEL-37) melanoma cells. In vitro cytotoxicity was evaluated by the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The inhibitory concentration (IC50) was 14.7 ± 1.2 μM for 24 h of drug exposure. Flow cytometry analysis revealed that vallesiachotamine induced G0/G1 arrest and increased the proportion of sub-G1 hypodiploid cells (at 11 μM and 22 μM) and this effect was not dependent on time of incubation. At these concentrations, a typical ladder was observed by agarose gel electrophoresis of the extracted DNA. Treatment of cells with 50 μM vallesiachotamine for 24 h caused extensive cytotoxicity and necrosis. Our results demonstrated that the indole alkaloid vallesiachotamine exhibited important cytotoxicity toward human melanoma cells and that apoptosis and necrosis might be responsible for the observed events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achenbach, H., Lottes, M., Waibel, R., Karikas, G. A., Correa, A. M. D., and Gupta, M. P., Alkaloids and other compounds from Psychotria correae. Phytochemistry, 38, 1537–1545 (1995).

    Article  CAS  Google Scholar 

  • Bokesh, H. R., Pannell, L. K., Cochran, P. K., Sowder, R. C., Mckee, T. C., and Boyd, M. R., A novel anti-HIV macrocyclic peptide from Palicourea condensata. J. Nat. Prod., 64, 249–250 (2001).

    Article  Google Scholar 

  • Bolzani, V. S., Trevisan, L. M. V., and Young, M. C., Triterpenes of Palicourea rigida H.B.K. Rev. Latinoamer. Quim., 23, 20–21 (1992).

    CAS  Google Scholar 

  • Brasil - Ministério da Saúde. Estimativas 2010. Incidência de câncer no Brasil. http://www.inca.gov.estimativa/2010 (2010).

  • Cragg, G. M. and Newman, D. J., Plants as a source of anticancer agents. J. Ethnopharmacol., 100, 72–79 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Cragg, G. M., Newman, D. J., and Yang, S. S., Natural produc extracts of plant and marine origin having antileukemia potential. The NCI Experience. J. Nat. Prod., 69, 488-498 (2006).

    Google Scholar 

  • Da Silva, V. G. C., Carvalho, M. G., and Alves, A. N., Chemical constituents from Palicourea coriácea (Rubiaceae). J. Nat. Med., 62, 356–357 (2008).

    Article  PubMed  Google Scholar 

  • Djerassi, C., Monteiro, H. J., Walser, A., and Durham, L. J., Alkaloid studies. LVI. The constitution of vallesiachotamine. J. Amer. Chem. Soc., 88, 1792–1798 (1966).

    Article  CAS  Google Scholar 

  • Do Nascimento, C. A., Liao, L. M., Kato, L., da Silva, C. C., Tanaka, C. M. A., Schuquel, I. T. A., de Oliveira, C. M. A., and Kato, I., A tetrahydro-β-carboline trisaccharide from Palicourea coriácea (Cham.) K. Schum. Carbohydr. Res., 343, 1104–1107 (2008).

    Article  PubMed  Google Scholar 

  • Dusman, L. T., Marinho Jorge, T. C., de Souza, M. C., Eberlin, M. N., Meurer, E. C., Bocca, C. C. Basso, E. A., and Sarragiotto, M. H., Monoterpene indole alkaloids from Palicourea crocea. J. Nat. Prod., 67, 1886–1888 (2004).

    Article  PubMed  Google Scholar 

  • El Seedi, H. R., Coumarins, benzoic acids and triterpenoids from Palicourea demissa. Rev. Latinoamer. Quim. 27, 13–16 (1999).

    Google Scholar 

  • Evans, D. A. Joule, J. A., and Smith, G. F., The alkaloids of Rhazya orientalis. Phytochemisty, 7, 1429–1431 (1968).

    Article  CAS  Google Scholar 

  • Giblin, A.-V. and Thomas, J. M., Incidence, mortality and survival in cutaneous melanoma. J. Plast. Reconstr. Aesthet Surg., 60, 32–40 (2007).

    Article  PubMed  Google Scholar 

  • Gonzalez, V. M., Fuertes, M. A., Alonso, C., and Perez, J. M., Is cisplatin-indued cell death always produced by apoptosis? Mol. Pharmacol., 59, 657–663 (2001).

    PubMed  CAS  Google Scholar 

  • Gorniak, S. L., Palermo-Neto, J., and de Souza-Spinosa, H., Effects of a Palicourea marcgravii leaf extract on some dopamine-related behaviours of rats. J. Ethnopharmacol., 28, 329–335 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Jordan, M. A. and Wilson, L., Microtubules as a target for anticancer drugs. Nat. Rev., 4, 253–265 (2004).

    Article  CAS  Google Scholar 

  • Kirkwood, J. M., Ibrahimm, J. G., Sosman, J. A., Sondakm, V. K., Agarwala, S. S., and Ernstoff, M. S., High-dose interferon α-2β significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB-III melanoma: results of intergroup trial E1694/S9512/C509801. J. Clin. Oncol., 19, 2370–80 (2001).

    PubMed  CAS  Google Scholar 

  • Leite, V. C., Santos, R. F., Chen, L. C., and Guillo, L. A., Psoralen derivatives and longwave ultraviolet irradiation are active in vitro against human melanoma cell line. J. Photochem. Photobiol. B Bio., 76, 49–53 (2004).

    Article  CAS  Google Scholar 

  • Liu, L. F., Desai, S. D., Li, T.-K., Mao, Y., Sun, M., and Sim, S.-P., Mechanism of action of camptothecin. Ann. N. Y. Acad. Sci., 922, 1–10 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Mans, D. R., da Rocha, A. B., and Schwartsmann, G., Anticancer drug discovery and development in Brazil: targeted plant collection as a rational strategy to acquire candidate anti-cancer compounds. Oncologist, 5, 185–198 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxic assay. J. Immunol. Methods, 65, 55–63 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay, S., Handy, G. A., Funayama, S., and Cordell, G. A., Anticancer indole alkaloids of Rhazya stricta. J. Nat. Prod., 44, 696–700 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Paul, J. H. A., Maxwell, A. R., and Reynolds, W. F., Novel Bis(monoterpenoid) Indole Alkaloids from Psychotria bahiensis. J. Nat. Prod., 66, 752–754 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Sauerwein, M. and Shimomura, K., 17-0-Methylyohimbine and vallesiachotamine from roots of Amsonia elliptica. Phytochemistry, 29, 3377–3379 (1990).

    Article  CAS  Google Scholar 

  • Silva, M. C., Jr., 100 árvores do cerrado: guia de campo. Rede de sementes do cerrado, p. 278, (2005).

  • Solis, P. N., Wright, C. W., Gupta, M. P., and Phillipson, J. D., Alkaloids from Cephaelis dichroa. Phytochemistry, 33, 1117–1119 (1993).

    Article  CAS  Google Scholar 

  • Tan, W. W., Malignant melanoma. http://emedicine.medscape.com/article/280245-review (2010).

  • Tokarnia, C. H., Dobereiner, J., and Peixoto, P. V., Plantas Tóxicas do Brasil. Hellianthus, Rio de Janeiro, pp. 3–17, (2000).

    Google Scholar 

  • Valverde, J., Tamayo, G., and Hesse, M., β-Carboline monoterpenoid glucosides from Palicourea adusta. Phytochemistry, 52, 1485–1489 (1999).

    Article  CAS  Google Scholar 

  • Vencato, I., da Silva, F. M., de Oliveira, C. M. A., Kato, L., Tanaka, C. M. A., da Silva, C. C., and Sabino, J. R., Vallesiachotamine. Acta Crys. Sec. E Structure Reports Online, E62, o429–431 (2006).

    Article  CAS  Google Scholar 

  • Waterman, P. G. and Zhong, S., Vallesiachotamine and Isovallesiachotamine from seeds of Strychnos tricalysioides. Planta Med., 45, 28–30 (1982).

    Article  PubMed  CAS  Google Scholar 

  • WHO, World Health Organization recommends that no person under 18 should use a sunbed. WHO Media Centre. http://www.who.int/mediacentre/news/notes/2005/np07/en/ (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lídia Andreu Guillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soares, P.R.O., de Oliveira, P.L., de Oliveira, C.M.A. et al. In vitro antiproliferative effects of the indole alkaloid vallesiachotamine on human melanoma cells. Arch. Pharm. Res. 35, 565–571 (2012). https://doi.org/10.1007/s12272-012-0320-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-012-0320-7

Key words

Navigation