Skip to main content
Log in

DNA binding, antiviral activities and cytotoxicity of new furochromone and benzofuran derivatives

  • Research Articles
  • Drug Design and Discovery
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Bromination of visnagin (1) afforded 9-bromovisnagin (2) which on its alkaline hydrolysis afforded the 3-acetyl benzofuran derivative (3). The condensation of (3) with hydrazine hydrate, phenylhydrazine and/or hydroxylamine hydrochloride afforded the corresponding pyrazole derivatives (4a, b) and isoxazole derivative (4c). On the other hand, when compound 3 was condensed with some aromatic aldehydes, this yielded corresponding α, β-unsaturated keto derivatives (5a–e). Furthermore, when 1 was subjected to chlorosulfonation, the visnaginsulfonylchloride derivative 6 was afforded, which on amidation using morpholine, a sulonamido derivative (7) was obtained. Alkaline hydrolysis of the latter compound yielded 7-N-morpholinosulsamidobenzofuran (8) which was condensed with some aromatic aldehydes to yield the corresponding chalcone compounds (9a–e). Demethylation of visnagin afforded norvisnagin (10). The reaction of 10 with ethylbromoacetate in dry acetone yielded the ester benzopyran derivative (11) which reacted with hydrazine hydrate to afford the corresponding hydrazide derivative (12) and this was condensed with 3,4,5-trimethoxybenzaldehyde to give the corresponding hydrazone (13). A thaizolidinone derivative (14) was obtained by condensation of (13) with thioglycolic acid. Chloromethylation of norvisnagin afforded a 4-chloromethyl derivative (15) which reacted with different primary and secondary amines to yield the corresponding ethylamino derivative (16a, b). Moreover, mannich bases (16a, b) and (17a–c) were obtained by reacting norvisnagin with different primary and secondary amines in the presence of formalin but benzoylation of (16a, b) and (17a–c) afforded 4-oxybenzoyl derivative (18a–e). The prepared compounds were tested for their interaction with DNA; bromovisnagin 2 showed the highest affinity and compounds 6, 15, 8a, > 14, > 16b, 17a, and 16a showed moderate activity in decreasing potency. Moreover, compound 2 also was the most active as antiviral agent toward HS-I virus and compounds 6, 7, 15, 14, 16a, and 18a were found to be moderately active. CD50 of the active compounds were also measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Alim, M. A. and Aboulezz, A. F., Synthesis of some new furochromones. Egypt J. Chem., 29, 465–470 (1986).

    CAS  Google Scholar 

  • Abd Elhafez, O. M., El Khrisy Eel, D., Badria, F., and Fathy Ael, D., Synthesis and biological investigation of new thiazolidinone and oxadiazoline coumarin derivatives. Arch. Pharm. Res., 26, 686–696 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Balzarini, J., Orzeszko, B., Maurin, J. K., and Orzeszko, A., Synthesis and anti-HIV studies of 2-adamantyl-substituted thiazolidin-4-ones. Eur. J. Med. Chem., 42, 993–1003 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Bouabdallah, I., M’Barek, L. A., Zyad, A., Ramdani, A., Zidane, I., and Melhaoui, A., Anticancer effect of three pyrazole derivatives. Nat. Prod. Res., 20, 1024–1030 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Dimmock, J. R., Elias, D. W., Beazely, M. A., and Kandepu, N. M., Bioactivities of chalcones. Curr. Med. Chem., 6, 1125–1149 (1999).

    PubMed  CAS  Google Scholar 

  • Duarte, J., Lugnier, C., Torres, A. I., Pérez-Vizcaino, F., Zarzuelo, A., and Tamargo, J., Effects of visnagin on cyclic nucleotide phosphodiesterases and their role in its inhibitory effects on vascular smooth muscle contraction. Gen. Pharmacol., 32, 71–74 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Duarte, J., Torres, A. I., and Zarzuelo, A., Cardiovascular effects of visnagin on rats. Planta Med., 66, 35–39 (2000).

    Article  PubMed  CAS  Google Scholar 

  • El-Bendary, E. r. and Badria, F. A., Synthesis, DNA-binding, and antiviral activity of certain pyrazolo[3,4-d]pyrimidine derivatives. Arch. Pharm. (Weinheim), 333, 99–103 (2000).

    Article  CAS  Google Scholar 

  • El-Gamal, M. H. A., Shalaby, N. M. M., Duddeck, H., and Rosenbaum, D., Synthesis of some furochromonesulfonamide derivatives with potential pharmacological activity. J. Heterocycl. Chem., 24, 721–724 (1987).

    Article  Google Scholar 

  • El-Sherbeny, M. A., El-Ashmawy, M. B., El-Subbagh, H. I., El-Emam, A. A., and Badria, F. A., Synthesis, antimicrobial and antiviral evaluation of certain thienopyrimidine derivatives. Eur. J. Med. Chem., 30, 445–449 (1995).

    Article  CAS  Google Scholar 

  • El-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A., and Al-Obaid, A. M., Synthesis and biological evaluation of certain alpha,beta-unsaturated ketones and their corresponding fused pyridines as antiviral and cytotoxic agents. J. Med. Chem., 43, 2915–2921 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Galal, S. A., Abd El-All, A. S., Abdallah, M. M., and El-Diwani, H. I., Synthesis of potent antitumor and antiviral benzofuran derivatives. Bioorg. Med. Chem. Lett., 19, 2420–2428 (2009).

    Article  PubMed  CAS  Google Scholar 

  • García-Giménez, J. L., González-Alvarez, M., Liu-González, M., Macías, B., Borrás, J., and Alzuet, G., Toward the development of metal-based synthetic nucleases: DNA binding and oxidative DNA cleavage of a mixed copper(II) complex with N-(9H-purin-6-yl)benzenesulfonamide and 1,10-phenantroline. Antitumor activity in human Caco-2 cells and Jurkat T lymphocytes. Evaluation of p53 and Bcl-2 proteins in the apoptotic mechanism. J. Inorg. Biochem., 103, 923–934 (2009).

    Article  PubMed  Google Scholar 

  • Hishmat, O. H., Mustafa, A., and Younes, M. M. Y., Mannich reaction of 1(4,6-dimethoxybenzofuranyl) and 1-(4,6-7-trimethoxybenzofuranyl) butan-1,2,3-trione-2-aryl hydrazone. Ind. J. Chem., 9, 893–894 (1971).

    CAS  Google Scholar 

  • Kamal, A., Shankaraiah, N., Prabhakar, S., Reddy, Ch. R., Markandeya, N., Reddy, K. L., and Devaiah, V., Solid-phase synthesis of new pyrrolobenzodiazepine-chalcone conjugates: DNA-binding affinity and anticancer activity. Bioorg. Med. Chem. Lett., 18, 2434–2439 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Kochetkov, N. K. and Sokolov, S. D., In Katritzky, A. R. (Ed.), Advances in Heterocyclic Chemistry. Academic press, New York, Vol. 2, pp. 365–422, (1963).

    Google Scholar 

  • Lee, J. K., Jung, J. S., Park, S. H., Park, S. H., Sim, Y, B., Kim, S. M., Ha, T. S., and Suh, H. W., Anti-inflammatory effect of visnagin in lipopolysaccharide-stimulated BV-2 microglial cells. Arch. Pharm. Res., 33, 1843–1850 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Lv, P. C., Zhou, C. F., Chen, J., Liu, P. G., Wang, K. R., Mao, W. J., Li, H. Q., Yang, Y., Xiong, J., and Zhu, H. L., Design, synthesis and biological evaluation of thiazolidinone derivatives as potential EGFR and HER-2 kinase inhibitors. Bioorg. Med. Chem., 18, 314–319 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Mandour, A. H., Abu-Mustafa, E. A., Abdel-Latif, N. A., and El-Bazza, Z. E., Synthesis and biological evaluation of some new visnagin and benzofuran derivatives. Al-Azhar Bull. Sci., 5, 983–993 (1994).

    CAS  Google Scholar 

  • Mijatovic, T., De Nève, N., Gailly, P., Mathieu, V., Haibe-Kains, B., Bontempi, G., Lapeira, J., Decaestecker, C., Facchini, V., and Kiss, R., Nucleolus and c-Myc: potential targets of cardenolide-mediated antitumor activity. Mol. Cancer Ther., 7, 1285–1296 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Park, H. J., Lee, K., Park, S. J., Ahn, B., Lee, J. C., Cho, H., and Lee, K. I., Identification of antitumor activity of pyrazole oxime ethers. Bioorg. Med. Chem. Lett., 15, 3307–3312 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Ragab, F. A., Hassan, G. S., Yossef, H. A., and Hashem, H. A., Synthesis of 6- and 9-alkylaminomethyl furoflavones as gastroprotective agents. Eur. J. Med. Chem., 42, 1117–1127 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Rao, A., Balzarini, J., Carbone, A., Chimirri, A., De Clercq, E., Monforte, A. M., Monforte, P., Pannecouque, C., and Zappalà, M., 2-(2,6-Dihalophenyl)-3-(pyrimidin-2-yl)-1,3-thiazolidin-4-ones as non-nucleoside HIV-1 reverse transcriptase inhibitors. Antiviral Res., 63, 79–84 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Rescifina, A., Chiacchio, M. A., Corsaro, A., De Clercq, E., Iannazzo, D., Mastino, A., Piperno, A., Romeo, G., Romeo, R., and Valveri, V., Synthesis and biological activity of isoxazolidinyl polycyclic aromatic hydrocarbons: potential DNA intercalators. J. Med. Chem., 49, 709–715 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Rida, S. M., El-Hawash, S. A., Fahmy, H. T., Hazzaa, A. A., and El-Meligy, M. M., Synthesis of novel benzofuran and related benzimidazole derivatives for evaluation of in vitro anti-HIV-1, anticancer and antimicrobial activities. Arch. Pharm. Res., 29, 826–833 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Schönberg, A. and Aziz, G., Furochromones and coumarins. VI. Demethylation of xanthotoxin, khellin and khellol with aniline hydrochloride and magnesium iodide. J. Am. Chem. Soc., 75, 3265–3266 (1953).

    Article  Google Scholar 

  • Scozzafava, A., Owa, T., Mastrolorenzo, A., and Supuran, C. T., Anticancer and antiviral sulfonamides. Curr. Med. Chem., 10, 925–953 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Shivarama Holla, B., Veerendra, B., Shivananda, M. K., and Poojary, B., Synthesis characterization and anticancer activity studies on some Mannich bases derived from 1,2,4-triazoles. Eur. J. Med. Chem., 38, 759–767 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Sriram, D., Yogeeswari, P., and Kumar, T. G., Microwaveassisted synthesis and anti-YFV activity of 2,3-diaryl-1,3-thiazolidin-4-ones. J. Pharm. Pharm. Sci., 8, 426–429 (2005).

    PubMed  CAS  Google Scholar 

  • Starkowsky, N. A., Addition of urea, thiourea and iodine to the natural benzopyrones of Ammi visnaga Linn. and Ammi majus linn. Egypt J. Chem., 2, 111–117 (1959).

    Google Scholar 

  • Tan, J. H., Zhang, Q. X., Huang, Z. S., Chen, Y., Wang, X. D., Gu, L. Q., and Wu, J. Y., Synthesis, DNA binding and cytotoxicity of new pyrazole emodin derivatives. Eur. J. Med. Chem., 41, 1041–1047 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Terzioğlu, N., Karali, N., Gürsoy, A., Pannecouque, C., Leysen, P., Paeshuyse, J., Neyts, J., and De Clercq, E., Synthesis and primary antiviral activity evaluation of 3-hydrazono-5-nitro-2-indolinone derivatives. ARKIVOC, (i), 109–118 (2006).

  • Wenzel, N. I., Chavain, N., Wang, Y., Friebolin, W., Maes, L., Pradines, B., Lanzer, M., Yardley, V., Brun, R., Herold-Mende, C., Biot, C., Tóth, K., and Davioud-Charvet, E., Antimalarial versus cytotoxic properties of dual drugs derived from 4-aminoquinolines and Mannich bases: interaction with DNA. J. Med. Chem., 53, 3214–3226 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Wu, S., Guo, W., Teraishi, F., Pang, J., Kaluarachchi, K., Zhang, L., Davis, J., Dong, F., Yan, B., and Fang, B., Anticancer activity of 5-benzylidene-2-phenylimino-1,3-thiazolidin-4-one (BPT) analogs. Med. Chem., 2, 597–605 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omaima Mohamed Abdelhafez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdelhafez, O.M., Abedelatif, N.A. & Badria, F.A. DNA binding, antiviral activities and cytotoxicity of new furochromone and benzofuran derivatives. Arch. Pharm. Res. 34, 1623–1632 (2011). https://doi.org/10.1007/s12272-011-1006-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-011-1006-2

Key words

Navigation