Skip to main content
Log in

Synthesis of novel quinoxalinone derivatives by conventional and microwave methods and assessing their biological activity

  • Research Articles
  • Drug Design and Discovery
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

In this study, twenty-one arylaminoquinoxalinone derivatives were synthesized and their antibacterial activities against Staphylococci aureus, Pseudomonas aureus, Escherichia coli, Bacillus subtilis, Salmonella typhi, and Shigella pneumoniae were evaluated relative to known antibiotics; augmentin, ampicillin, and chloramphenicol. The insecticidal activities of the prepared compounds were also investigated against Tribolium castaneum using permethrin as a standard insecticide. The derivatives were synthesized using both conventional and microwave techniques. Their structures were confirmed using spectral techniques and elemental analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, M. M., Ismail, M. M., El-Gaby, M. S., Zahran, M. A., and Ammar, Y. A., Synthesis and antimicrobial activities of some novel quinoxalinone derivatives. Molecules, 5, 864–873 (2000).

    Article  CAS  Google Scholar 

  • An, D. and Peng, Z., Synthesis of pyrimidine derivatives carrying nitrogen-containing benzoheterocycles. Hunan Daxue Xuebao, Ziran Kexueban, 30, 29–31 (2003).

    CAS  Google Scholar 

  • Atta-ur-Rehman, M., Studies in natural product chemistry. Elsevier Science Publishers, Netherlands, pp. 383–384, (1991).

    Google Scholar 

  • Atta-ur-Rehman, M., Choudhary, I., and Thomson, W. J., Manual of Bioassay techniques for natural product research. Harward Academic Press, Amsterdam, pp. 82–84, (1999).

    Google Scholar 

  • Atta-ur-Rehman, M., Choudhary, I., and Thomson, W. J., Bioassay techniques for drug development. Harward Academic Publishers, France, pp. 67–68, (2001).

    Book  Google Scholar 

  • Cai, S. X., Huang, J. C., Espitia, S. A., Tran, M., Ilyin, V. I., Hawkinson, J. E., Woodward, R. M., Weber, E., and Keana, J. F., 5-(N-oxyaza)-7-substituted-1,4-dihydroquinoxaline-2,3-diones: novel, systemically active and broad spectrum antagonists for NMDA/glycine, AMPA, and kainate receptors. J. Med. Chem., 40, 3679–3686 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Csikós, É., Gönczi, C., Podányi, B., Tóth, G., and Hermecz, I., Regioselectivity in preparation of unsymmetrically substituted 3-aminoquinoxalin-2(1H)-ones. J. Chem. Soc. Perkin Trans. I, 1789–1794 (1999).

  • Haworth, H. D. and Robinson, S., Synthetic antimalarials. Part XXVII. Some derivatives of phthalazine, quinoxaline, and isoquinoline. J. Chem. Soc., 174, 777–782 (1948).

    Article  PubMed  CAS  Google Scholar 

  • Jaso, A., Zarranz, B., Aldana, I., and Monge, A., Synthesis of new quinoxaline-2-carboxylate 1,4-dioxide derivatives as anti-mycobacterium tuberculosis agents. J. Med. Chem., 48, 2019–2025 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Khan, S. A., Synthesis, characterization and in vitro antibacterial activity of new steroidal 5-en-3-oxazolo and thiazoloquinoxaline. Eur. J. Med. Chem., 43, 2040–2044 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Kim, H. S. and Kim, J. H., Synthesis and tautomerism of novel quinoxalines. J. Korean Chem. Soc., 47, 241–249 (2003).

    Article  CAS  Google Scholar 

  • Kucybala, Z. and Paczkowski, J., 3-Benzoyl-7-diethylamino-5-methyl-1-phenyl-1H-quinoxalin-2-one: an effective dyeing photoinitiator for free radical polymerization. J. Photochem. Photobiol. A Chem., 128, 135–138 (1999).

    Article  CAS  Google Scholar 

  • Palanichelvam, K., Cole, A. B., Shababi, M., and Schoelz, J. E., Agroinfiltration of Cauliflower mosaic virus gene VI elicits hypersensitive response in Nicotiana species. Mol. Plant Microbe. Interact., 13, 1275–1279 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Perkin, W. H. and Riley, G. C., Derivatives of tetrahydrocarbazole Part 4. J. Chem. Soc., 123, 2399–2409 (1923).

    CAS  Google Scholar 

  • Rangnekar, D. W. and Sonawane, N. D., Synthesis and application of 2-styryl-6(7)-bromothiazolo[4,5-b]quinoxaline based fluorescent dye chromophores: Part 2. Dyes Pigm., 45, 87–96 (2000).

    Article  CAS  Google Scholar 

  • Sakata, T., Tanaka, D., Takahashi, M., Sakaguchi, T., Oka, R., and Nishiyama, T., Antioxidant activity and oxidation products of 1,2,3,4-tetrahydroquinoxalines in peroxyl radical scavenging reactions, Part II. Technol. Rep. Kansai Univ., 47, 39–48 (2005).

    CAS  Google Scholar 

  • Sarges, R., 4-Arylsulfonyl-3,4-dihydro-2(1H)-quinoxalinone-1-alkanoic acids, esters, and salts. U.S. Patent 4,940,708 (1990).

  • Toshima, K., Kimura, T., Takano, R., Ozawa, T., Ariga, A., Shima, Y., Umezawa, K., and Matsumura, S., Molecular design, chemical synthesis and biological evaluation of quinoxaline-carbohydrate hybrids as novel and selective photo-induced DNA cleaving and cytotoxic agents. Tetrahedron, 59, 7057–7066 (2003).

    Article  CAS  Google Scholar 

  • Zhang, L., Qiu, B., Li, X., Li, X., W., J., Zhang, Y., Liu, J., Li, J., and Shen, J., Preparation of 6-substituted quinoxaline JSP-1 inhibitors by microwave accelerated nucleophilic substitution. Molecules, 11, 988–999 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Z., Wisnoski, D. D., Wolkenberg, S. E., Leister, W. H., Wang, Y., and Lindsley, C. W., General microwave-assisted protocols for the expedient synthesis of quinoxalines and heterocyclic pyrazines. Tetrahedron Lett., 45, 4873–4876 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munawar Ali Munawar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasir, W., Munawar, M.A., Ahmed, E. et al. Synthesis of novel quinoxalinone derivatives by conventional and microwave methods and assessing their biological activity. Arch. Pharm. Res. 34, 1605–1614 (2011). https://doi.org/10.1007/s12272-011-1004-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-011-1004-4

Key words

Navigation