Skip to main content
Log in

A python-based docking program utilizing a receptor bound ligand shape: PythDock

  • Research Articles
  • Drug Design and Discovery
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

PythDock is a heuristic docking program that uses Python programming language with a simple scoring function and a population based search engine. The scoring function considers electrostatic and dispersion/repulsion terms. The search engine utilizes a particle swarm optimization algorithm. A grid potential map is generated using the shape information of a bound ligand within the active site. Therefore, the searching area is more relevant to the ligand binding. To evaluate the docking performance of PythDock, two well-known docking programs (AutoDock and DOCK) were also used with the same data. The accuracy of docked results were measured by the difference of the ligand structure between x-ray structure, and docked pose, i.e., average root mean squared deviation values of the bound ligand were compared for fourteen protein-ligand complexes. Since the number of ligands’ rotational flexibility is an important factor affecting the accuracy of a docking, the data set was chosen to have various degrees of flexibility. Although PythDock has a scoring function simpler than those of other programs (AutoDock and DOCK), our results showed that PythDock predicted more accurate poses than both AutoDock4.2 and DOCK6.2. This indicates that PythDock could be a useful tool to study ligand-receptor interactions and could also be beneficial in structure based drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Böhm, H. J., On the use of LUDI to search the Fine Chemicals Directory for ligands of proteins of known three-dimensional structure. J. Comput. Aided Mol. Des., 8, 623–632 (1994).

    Article  PubMed  Google Scholar 

  • Brooijmans, N. and Kuntz, I. D., Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct., 32, 335–373 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Chen, H. M., Liu, B. F., Huang, H. L., Hwang, S. F., and Ho, S. Y., SODOCK: swarm optimization for highly flexible protein-ligand docking. J. Comput. Chem., 28, 612–623 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Chung, J. Y., Hah, J. M., and Cho, A. E., Correlation between performance of QM/MM docking and simple classification of binding sites. J. Chem. Inf. Model., 49, 2382–2387 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Confgen V2.0, S. D., Llc, New York, NY (2008).

  • Eldridge, M. D., Murray, C. W., Auton, T. R., Paolini, G. V., and Mee, R. P., Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J. Comput. Aided Mol. Des., 11, 425–445 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Ewing, T. J., Makino, S., Skillman, A. G., and Kuntz, I. D., DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J. Comput. Aided Mol. Des., 15, 411–428 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., and Shenkin, P. S., Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 47, 1739–1749 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Gilson, M. K. and Zhou, H. X., Calculation of protein-ligand binding affinities. Annu. Rev. Biophys. Biomol. Struct., 36, 21–42 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Hawkins, P. C., Skillman, A. G., and Nicholls, A., Comparison of shape-matching and docking as virtual screening tools. J. Med. Chem., 50, 74–82 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Helmer-Citterich, M. and Tramontano, A., PUZZLE: a new method for automated protein docking based on surface shape complementarity. J. Mol. Biol., 235, 1021–1031 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Jain, A. N., Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J. Med. Chem., 46, 499–511 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Kitchen, D. B., Decornez, H., Furr, J. R., and Bajorath, J., Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov., 3, 935–949 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Kontoyianni, M., McClellan, L. M., and Sokol, G. S., Evaluation of docking performance: comparative data on docking algorithms. J. Med. Chem., 47, 558–565 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Korb, O., Stützle, T., and Exner, T. E., Empirical scoring functions for advanced protein-ligand docking with PLANTS. J. Chem. Inf. Model., 49, 84–96 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Leach, A. R., Shoichet, B. K., and Peishoff, C. E., Prediction of protein-ligand interactions. Docking and scoring: successes and gaps. J. Med. Chem., 49, 5851–5855 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Lee, H. S., Choi, J., Kufareva, I., Abagyan, R., Filikov, A., Yang, Y., and Yoon, S., Optimization of high throughput virtual screening by combining shape-matching and docking methods. J. Chem. Inf. Model., 48, 489–497 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Luo, W., Pei, J., and Zhu, Y., A fast protein-ligand docking algorithm based on hydrogen bond matching and surface shape complementarity. J. Mol. Model., 16, 903–913 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Mehler, E. L. and Solmajer, T., Electrostatic effects in proteins: comparison of dielectric and charge models. Protein Eng., 4, 903–910 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Meng, E. C., Shoichet, B. K., and Kuntz, I. D., Automated docking with grid-based energy evaluation. J. Comput. Chem., 13, 505–524 (1992).

    Article  CAS  Google Scholar 

  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., and Olson, A. J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 19, 1639–1662 (1998).

    Article  CAS  Google Scholar 

  • Rester, U., Dock around the Clock — Current Status of Small Molecule Docking and Scoring. QSAR Comb. Sci., 25, 605–615 (2006).

    Article  CAS  Google Scholar 

  • Shoichet, B. K. and Kuntz, I. D., Matching chemistry and shape in molecular docking. Protein Eng., 6, 723–732 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Tame, J. R., Scoring functions: a view from the bench. J. Comput. Aided Mol. Des., 13, 99–108 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Taylor, R. D., Jewsbury, P. J., and Essex, J. W., A review of protein-small molecule docking methods. J. Comput. Aided Mol. Des., 16, 151–166 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Venkatachalam, C. M., Jiang, X., Oldfield, T., and Waldman, M., LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J. Mol. Graph. Model., 21, 289–307 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Viji, S. N., Prasad, P. A., and Gautham, N., Protein-ligand docking using mutually orthogonal Latin squares (MOLSDOCK). J. Chem. Inf. Model., 49, 2687–2694 (2009).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Mi Hah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, J.Y., Cho, S.J. & Hah, JM. A python-based docking program utilizing a receptor bound ligand shape: PythDock. Arch. Pharm. Res. 34, 1451–1458 (2011). https://doi.org/10.1007/s12272-011-0906-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-011-0906-5

Key words

Navigation