Skip to main content
Log in

Cell growth inhibition and apoptosis by SDS-solubilized single-walled carbon nanotubes in normal rat kidney epithelial cells

  • Research Articles
  • Drug Actions
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs), promising novel nanomaterials, have been applied to drug delivery and bio-imaging; however, their potential harmful effects on human health and environment have gained much attention recently. In the present study, we investigated cytotoxic effect of solubilized single-walled CNTs (SWCNTs), which were dispersed in water by sodium dodesyl sulfate (SDS), in normal rat kidney epithelial cells (NRK-52E). SDS-SWCNT (0.125–10 μg/mL)-treated NRK-52E cells showed decreased cell viability and enhanced cytotoxicity marker levels following 24–48 h incubation. In addition, SDS-SWCNT treatment evoked the cell growth inhibition: 8 μg/mL SDS-SWCNT induced the growth arrest at G0/G1 phase and levels of cell cycle-related proteins such as CDK2, CDK6 and phosphorylated-retinoblastoma (pRB) were significantly reduced by CNT. Whereas, at higher concentration of SDS-SWCNT, the percentage of cell numbers in apoptotic sub-G1 phase was substantially increased. Along with these changes, SDS-SWCNT treatment elevated protein levels for p53 and p21 with a concomitant increase in the single strand DNA breakage. Taken together, these results suggest that SDS-solubilized SWCNTs exert genotoxic effect in renal epithelial cells, and p53-dependent signaling can be associated with the growth arrest and apoptosis events upon CNT-induced DNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aillon, K. L., Xie, Y., El-Gendy, N., Berkland, C. J., and Forrest, M. L., Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug Deliv. Rev., 61, 457–466 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Arlt, M., Haase, D., Hampel, S., Oswald, S., Bachmatiuk, A., Klingeler, R., Schulze, R., Ritschel, M., Leonhardt, A., Fuessel, S., Büchner, B., Kraemer, K., and Wirth, M. P., Delivery of carboplatin by carbon-based nanocontainers mediates increased cancer cell death. Nanotechnology, 21, 335101 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Chen, J., Chen, S., Zhao, X., Kuznetsova, L. V., Wong, S. S., and Ojima, I., Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J. Am. Chem. Soc., 130, 16778–16785 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Chou, C. C., Hsiao, H. Y., Hong, Q. S., Chen, C. H., Peng, Y.W., Chen, H. W., and Yang, P. C., Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett., 8, 437–445 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Cui, D., Tian, F., Ozkan, C. S., Wang, M., and Gao, H., Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol. Lett., 155, 73–85 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Donaldson, K., Aitken, R., Tran, L., Stone, V., Duffin, R., Forrest, G., and Alexander, A., Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol. Sci., 92, 5–22 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Endo, M., Strano, M. S., and Ajayan, P. M., Potential applications of carbon nanotubes. Topics Appl. Phys., 111, 13–61 (2008).

    Article  CAS  Google Scholar 

  • Gannon, C. J., Cherukuri, P., Yakobson, B. I., Cognet, L., Kanzius, J. S., Kittrell, C., Weisman, R. B., Pasquali, M., Schmidt, H. K., Smalley, R. E., and Curley, S. A., Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer, 110, 2654–2665 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Han, J. H., Lee, E. J., Lee, J. H., So, K. P., Lee, Y. H., Bae, G.N., Lee, S. B., Ji, J. H., Cho, M. H., and Yu, I. J., Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhal. Toxicol., 20, 741–749 (2008a).

    Article  PubMed  Google Scholar 

  • Han, S. G., Andrews, R., Gairola, C. G., and Bhalla, D. K., Acute pulmonary effects of combined exposure to carbon nanotubes and ozone in mice. Inhal. Toxicol., 20, 391–398 (2008b).

    Article  PubMed  CAS  Google Scholar 

  • Harper, J. W. and Adams, P. D., Cyclin-dependent kinases. Chem. Rev., 101, 2511–2526 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Ji, Z., Zhang, D., Li, L., Shen, X., Deng, X., Dong, L., Wu, M., and Liu, Y., The hepatotoxicity of multi-walled carbon nanotubes in mice. Nanotechnology, 20, 445101 (2009).

    Article  PubMed  Google Scholar 

  • Jia, G., Wang, H., Yan, L., Wang, X., Pei, R., Yan, T., Zhao, Y., and Guo, X., Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol., 39, 1378–1383 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Johnson, D. R., Methner, M. M., Kennedy, A. J., and Steevens, J. A., Potential for occupational exposure to engineered carbon-based nanomaterials in environmental laboratory studies. Environ. Health Perspect., 118, 49–54 (2010).

    PubMed  CAS  Google Scholar 

  • Kang, Y. K., Lee, O. S., Deria, P., Kim, S. H., Park, T. H., Bonnell, D. A., Saven, J. G., and Therien, M. J., Helical wrapping of single-walled carbon nanotubes by water soluble poly(p-phenyleneethynylene). Nano Lett., 9, 1414–1418 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Kayat, J., Gajbhiye, V., Tekade, R. K., and Jain, N. K., Pulmonary toxicity of carbon nanotubes: a systematic report. Nanomedicine, 7, 40–49 (2011).

    PubMed  CAS  Google Scholar 

  • Lacerda, L., Bianco, A., Prato, M., and Kostarelos, K., Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv. Drug Deliv. Rev., 58, 1460–1470 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Ladeira, M. S., Andrade, V. A., Gomes, E. R., Aguiar, C. J., Moraes, E. R., Soares, J. S., Silva, E. E., Lacerda, R. G., Ladeira, L. O., Jorio, A., Lima, P., Fatima Leite, M., Resende, R. R., and Guatimosim, S., Highly efficient siRNA delivery system into human and murine cells using single-wall carbon nanotubes. Nanotechnology, 21, 385101 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Song, W., Li, W., and Gaku, I., In vitro cytotoxicity and oxidative damage effects of multi-wall carbon nanotube on RAW264.7 macrophages. Wei Sheng Yan Jiu, 37, 281–284 (2008).

    PubMed  Google Scholar 

  • Maynard, A. D., Baron, P. A., Foley, M., Shvedova, A. A., Kisin, E. R., and Castranova, V., Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J. Toxicol. Environ. Health A, 67, 87–107 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Muller, J., Huaux, F., Moreau, N., Misson, P., Heilier, J. F., Delos, M., Arras, M., Fonseca, A., Nagy, J. B., and Lison, D., Respiratory toxicity of multi-wall carbon nanotubes. Toxicol. Appl. Pharmacol., 207, 221–231 (2005).

    PubMed  CAS  Google Scholar 

  • Murray, A. R., Kisin, E., Leonard, S. S., Young, S. H., Kommineni, C., Kagan, V. E., Castranova, V., and Shvedova, A. A., Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology, 257, 161–171 (2009).

    Article  PubMed  CAS  Google Scholar 

  • O’Connell, M. J., Bachilo, S. M., Huffman, C. B., Moore, V.C., Strano, M. S., Haroz, E. H., Rialon, K. L., Boul, P. J., Noon, W. H., Kittrell, C., Ma, J., Hauge, R. H., Weisman, R. B., and Smalley, R. E., Band gap fluorescence from individual single-walled carbon nanotubes. Science, 297, 593–596 (2002).

    Article  PubMed  Google Scholar 

  • Pacurari, M., Yin, X. J., Zhao, J., Ding, M., Leonard, S. S., Schwegler-Berry, D., Ducatman, B. S., Sbarra, D., Hoover, M. D., Castranova, V., and Vallyathan, V., Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kappaB, and Akt in normal and malignant human mesothelial cells. Environ. Health Perspect., 116, 1211–1217 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Park, E. J., Cho, W. S., Jeong, J., Yi, J., Choi, K., and Park, K., Pro-inflammatory and potential allergic responses resulting from B cell activation in mice treated with multiwalled carbon nanotubes by intratracheal instillation. Toxicology, 259, 113–121 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Patlolla, A., Patlolla, B., and Tchounwou, P., Evaluation of cell viability, DNA damage, and cell death in normal human dermal fibroblast cells induced by functionalized multiwalled carbon nanotube. Mol. Cell. Biochem., 338, 225–232 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Radomski, A., Jurasz, P., Alonso-Escolano, D., Drews, M., Morandi, M., Malinski, T., and Radomski, M. W., Nanoparticle-induced platelet aggregation and vascular thrombosis. Br. J. Pharmacol., 146, 882–893 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Reddy, A. R., Reddy, Y. N., Krishna, D. R., and Himabindu, V., Multi wall carbon nanotubes induce oxidative stress and cytotoxicity in human embryonic kidney (HEK293) cells. Toxicology, 272, 11–16 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Ruggiero, A., Villa, C. H., Bander, E., Rey, D. A., Bergkvist, M., Batt, C. A., Manova-Todorova, K., Deen, W. M., Scheinberg, D. A., and McDevitt, M. R., Paradoxical glomerular filtration of carbon nanotubes. Proc. Natl. Acad. Sci. U. S. A., 107, 12369–12374 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Shvedova, A. A., Castranova, V., Kisin, E. R., Schwegler-Berry, D., Murray, A. R., Gandelsman, V. Z., Maynard, A., and Baron, P., Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Environ. Health A, 66, 1909–1926 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Singh, N. P., McCoy, M. T., Tice, R. R., and Schneider, E. L., A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res., 175, 184–191 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Sumio, I., Helical microtubules of graphitic carbon. Nature, 354, 56–58 (1991).

    Article  Google Scholar 

  • Warheit, D. B., Laurence, B. R., Reed, K. L., Roach, D. H., Reynolds, G. A., and Webb, T. R., Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci., 77, 117–125 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Yang, H., Liu, C., Yang, D., Zhang, H., and Xi, Z., Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J. Appl. Toxicol., 29, 69–78 (2009).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youn Kyung Kang or Mi-Kyoung Kwak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nam, CW., Kang, SJ., Kang, Y.K. et al. Cell growth inhibition and apoptosis by SDS-solubilized single-walled carbon nanotubes in normal rat kidney epithelial cells. Arch. Pharm. Res. 34, 661–669 (2011). https://doi.org/10.1007/s12272-011-0417-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-011-0417-4

Key words

Navigation