Skip to main content
Log in

The regulation of blood glucose level in physical and emotional stress models: Possible involvement of adrenergic and glucocorticoid systems

  • Research Articles
  • Drug Actions
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

This study was done to determine the effect of stress on blood glucose regulation in ICR mice. The stress was induced by the electrical foot shock-witness model. Blood glucose level was found to be increased in the electrical foot shock-induced physical stress group. Furthermore, the blood glucose levels were also elevated in the emotional stress group in both physical and emotional stress groups. The blood glucose level reached maximum 30 min after stress stimulation and returned to normal level 2 h after stress stimulation in both physical and emotional stress groups. Subsequently, we observed that intraperitoneal injection of phentolamine (an α1-adrenergic receptor antagonist), yohimbine (an α2-adrenergic receptor antagonist) or RU486 (a glucocorticoid receptor blocker) significantly inhibited blood glucose level induced by both physical and emotional stress. The results of our study suggest that physical and emotional stress increases blood glucose level via activation of adrenergic and glucocorticoid system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amano, M., Suemaru, K., Cui, R., Umeda, Y., Li, B., Gomita, Y., Kawasaki, H., and Araki, H., Effects of Physical and Psychological Stress on 5-HT2A Receptor-mediated Wetdog Shake Responses in Streptozotocin-induced Diabetic Rats. Acta Med. Okayama, 61, 205–212 (2007).

    CAS  PubMed  Google Scholar 

  • Cox, R. H., Hubbard, J. W., Lawler, J. E., Sanders, B. J., and Mitchell, V. P., Cardiovascular and sympathoadrenal responses to stress in swim-trained rats. J. Appl. Physiol., 58, 1207–1214 (1985).

    CAS  PubMed  Google Scholar 

  • De Boer, S. F., Koopmans, S. J., Slangen, J. L., and Van der G. J., Plasma catecholamine, corticosterone and glucose responses to repeated stress in rats: effect of interstressor interval length. Physiol. Behav., 47, 1117–1124 (1990).

    Article  PubMed  Google Scholar 

  • Diamond, D. M., Bennett, M. C., Fleshner, M., and Rose, G. M., Inverted-U relationship between the level of peripheral corticosterone and the magnitude of hippocampal primed burst potentiation. Hippocampus, 2, 421–430 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Dobrakovová, M., Kvetnanský, R., Oprsalová, Z., and Jezová, D., Specificity of the effect of repeated handling on sympathetic-adrenomedullary and pituitary-adrenocortical activity in rats. Psychoneuroendocrinology, 18, 163–174 (1993).

    Article  PubMed  Google Scholar 

  • Friedman, J. E., Sun, Y., Ishizuka, T., Farrell, C. J., McCormack, S. E., Herron, L. M., Hakimi, P., Lechner, P., and Yun, J. S., Phosphoenolpyruvate carboxykinase (GTP) gene transcription and hyperglycemia are regulated by glucocorticoids in genetically obese db/db transgenic mice. J. Biol. Chem., 272, 31475–31481 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Goran, K., Sladjana, P., Miloje, T., Svetlana, A., and Miodrag, D., Stress hyperglycemia in acute myocardial infarction. Facta Universitatis. Series, Medicine and Biology, 13, 152–157 (2006).

    Google Scholar 

  • Kainuma, E., Watanabe, M., Tomiyama, M. C., Inoue, M., Kuwano, Y., Ren, H., and Abo, T., Association of glucocorticoid with stress-induced modulation of body temperature, blood glucose and innate immunity. Psychoneuroendocrinology, 34, 1459–1468 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Konarska, M., Stewart, R. E., and McCarty, R., Habituation of sympathetic-adrenal medullary responses following exposure to chronic intermittent stress. Physiol. Behav., 45, 255–261 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Kvetnansky, R., Sun, C. L., Lake, C. R., Thoa, N., Torda, T., and Kopin, I. J., Effect of handling and forced immobilization on rat plasma levels of epinephrine, norepinephrine, and dopamine-β-hydroxylase. Endocrinology, 103, 1868–1874 (1978).

    Article  CAS  PubMed  Google Scholar 

  • Kwon, M. S., Seo, Y. J., Shim, E. J., Lee, J. K., Jang, J. E., Park, S. H., Jung, J. S., and Suh, H. W., The differential effects of emotional or physical stress on pain behaviors or on c-Fos immunoreactivity in paraventricular nucleus or arcuate nucleus. Brain Res., 1190, 122–131 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Lekas, M. C., Fisher, S. J., El-Bahrani, B., van Delangeryt, M., Vranic, M., and Shi, Z. Q., Glucose uptake during centrally induced stress is insulin independent and enhanced by adrenergic blockade. J. Appl. Physiol., 87, 722–731 (1999).

    CAS  PubMed  Google Scholar 

  • Márquez, C., Belda, X., and Armario, A., Post-stress recovery of pituitary-adrenal hormones and glucose, but not the response during exposure to the stressor, is a marker of stress intensity in highly stressful situations. Brain Res., 926, 181–185 (2002).

    Article  PubMed  Google Scholar 

  • Natelson, B. H., Tapp, W. N., Adamus, J. E., Mittler, J. C., and Levin, B. E., Humoral indices of stress in rats. Physiol. Behav., 26, 1049–1054 (1981).

    Article  CAS  PubMed  Google Scholar 

  • Natelson, B. H., Creighton, D., McCarty, R., Tapp, W. N., Pitman, D., and Ottenweller, J. E., Adrenal hormonal indices of stress in laboratory rats. Physiol. Behav., 39, 117–125 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Nonogaki, K. and Iguchi, A., Stress, acute hyperglycemia, and hyperlipidemia: role of the autonomic nervous system and cytokines. Trends Endocrinol. Metab., 8, 192–197 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Park, S. H., Sim, Y. B., Choi, S. M., Seo, Y. J., Kwon, M. S., Lee, J. K., and Suh, H. W., Antinociceptive profiles and mechanisms of orally administered vanillin in the mice. Arch. Pharm. Res., 32, 1643–1649 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Tajima, T., Endo, H., Suzuki, Y., Ikari, H., Gotoh, M., and Iguchi, A., Immobilization stress-induced increase of hippocampal acetylcholine and of plasma epinephrine, norepinephrine and glucose in rats. Brain Res., 720, 155–158 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Uresin, Y., Erbas, B., Ozek, M., Ozkök, E., and Gürol, A. O., Losartan may prevent the elevation of plasma glucose, corticosterone and catecholamine levels induced by chronic stress. J. Renin Angiotensin Aldosterone Syst., 5, 93–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Van den Berg, C. L., Lamberts, R. R., Wolterink, G., Wiegant, V. M., and Van Ree, J. M., Emotional and foot shock stimuli induce differential long-lasting behavioural effects in rats: involvement of opioids. Brain Res., 799, 6–15 (1998).

    Article  PubMed  Google Scholar 

  • Verago, J. L., Grassi, D. M., and Spadari, R. C., Metabolic markers following beta-adrenoceptor agonist infusion in footshock-stressed rats. Braz. J. Med. Biol. Res., 34, 1197–1207 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Won Suh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sim, YB., Park, SH., Kang, YJ. et al. The regulation of blood glucose level in physical and emotional stress models: Possible involvement of adrenergic and glucocorticoid systems. Arch. Pharm. Res. 33, 1679–1683 (2010). https://doi.org/10.1007/s12272-010-1018-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-010-1018-3

Key words

Navigation