Skip to main content
Log in

Whitening activity of luteolin related to the inhibition of cAMP pathway in α-MSH-stimulated B16 melanoma cells

  • Research Articles
  • Drug Efficacy and Safety
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

To examine the possibility of luteolin as a whitening agent, we measured antioxidant activity using DPPH assay, NBT/XO assay and intracellular ROS scavengning assay and depigmenting activity using tyrosinase assay, α-MSH-induced melanin production in B-16 cells. Luteolin showed dose-dependent anti-oxidant activity in DPPH, NBT/XO and intracellular ROS assay. Also, luteolin directly inhibited xanthine oxidase activity in a dose-dependent manner. Although luteolin did not directly inhibit tyrosinase activity, it dose-dependently inhibited both tyrosinase activity and melanin production in B16 melanoma cells stimulated by 1 μM α-MSH. Luteolin dose-dependently inhibited cAMP levels in B16 melanoma cells stimulated by 1 μM α-MSH and 1 μM forskolin, which suggest that luteolin directly inhibits adenyl cyclase in B16 melanoma cells. Therefore, these results suggest that whitening activity of luteolin may be due to the inhibition of adenyl cyclase involved in the signal pathway of α-MSH in B16 melanoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agin, P. P., Dowdy, J. C., and Costlow, M. E., Diacylglycerol-induced melanogenesis in Skh-2 pigmented hairless mice. Photodermatol Photoimmunol Photomed., 8, 51–56 (1991).

    PubMed  CAS  Google Scholar 

  • Boland, A., Delapierre, D., Mossay, D., Hans, P., and Dresse, A., Propofol protects cultured brain cells from iron ion-induced death: comparison with trolox. Eur. J. Pharmacol., 404, 21–27 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Cos, P., Rajan, P., Vedernikova, I., Calomme, M., Pieters, L., Vlietinck, A. J., Augustyns, K., Haemers, A., and Berghe, D. V., In vitro antioxidant profile of phenolic acid derivatives. Free Radic. Res., 36, 711–716 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Donsing, P., Limpeanchob, N., and Viyoch, J., Evaluation of the effect of Thai breadfruit’s heartwood extract on melanogenesis-inhibitory and antioxidation activities. J. Cosmet. Sci., 59, 41–58 (2008).

    PubMed  CAS  Google Scholar 

  • Friedmann, P. S. and Gilchrest, B. A., Ultraviolet radiation directly induces pigment production by cultured human melanocytes. J. Cell. Physiol., 133, 88–94 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Friedmann, P. S., Wren, F. E., and Matthews, J. N., Ultraviolet stimulated melanogenesis by human melanocytes is augmented by di-acyl glycerol but not TPA. J. Cell. Physiol., 142, 334–341 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Gordon, P. R., Mansur, C. P., and Gilchrest, B. A., Regulation of human melanocyte growth, dendricity, and melanization by keratinocyte derived factors. J. Invest. Dermatol., 92, 565–572 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Griffiths, C. E., Finkel, L. J., Ditre, C. M., Hamilton, T. A., Ellis, C. N., and Voorhees, J. J., Topical tretinoin (retinoic acid) improves melasma. A vehicle-controlled, clinical trial. Br. J. Dermatol. 129, 415–421 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Harris, G. K., Qian, Y., Leonard, S. S., Sbarra, D. C., and Shi, X., Luteolin and chrysin differentially inhibit cyclooxygenase-2 expression and scavenge reactive oxygen species but similarly inhibit prostaglandin-E2 Formation in RAW 264.7 Cells. J. Nutr., 136, 1517–1521 (2006).

    PubMed  CAS  Google Scholar 

  • Hougee, S., Sanders, A., Faber, J., Graus, Y. M. F., van den Berg, W. B., Garssen, J., Smit, H. F., and Hoijer, M. A., Decreased pro-inflammatory cytokine production by LPS-stimulated PBMC upon in vitro incubation with the flavonoids apigenin, luteolin or chrysin, due to selective elimination of monocytes/macrophages. Biochem. Pharmacol., 69, 241–248 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Hunt, G., Todd, C., Cresswell, J. E., and Thody, A. J., Alphamelanocyte stimulating hormone and its analogue Nle4-DPhe7 alpha-MSH affect morphology, tyrosinase activity and melanogenesis in cultured human melanocytes. J. Cell. Sci., 107, 205–211 (1994).

    PubMed  CAS  Google Scholar 

  • Ju, W., Wang, X., Shi, H., Chen, W., Belinsky, S. A., and Lin, Y., A Critical Role of Luteolin-Induced Reactive Oxygen Species in Blockage of Tumor Necrosis Factor-Activated Nuclear Factor-kB Pathway and Sensitization of Apoptosis in Lung Cancer Cells. Mol. Pharmacol., 71, 1381–1388 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Kim, K. A., Kim, Y. H., Seo, M. S., Lee, W. K., Kim, S. W., Kim, H. T., Lee, K. H., Shin, I. C., Han, J. S., Kim, H. J., and Lim, Y., Mechanism of silica-induced ROS generation in Rat2 fibroblast cells. Toxicol. Lett., 135, 185–191 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y. J., Antimelanogenic and antioxidant properties of gallic acid. Biol. Pharm. Bull. 30, 1052–1055 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Maeda, K. and Fukuda, M. Arbutin: mechanism of its depigmenting action in human melanocyte culture. J. Pharmacol. Exp. Ther., 276, 765–769 (1996).

    PubMed  CAS  Google Scholar 

  • Mishima, Y., Hatta, S., Ohyama, Y., and Inazu, M. Induction of melanogenesis suppression: cellular pharmacology and mode of differential action. Pigment Cell Res. 1, 367–374. (1988).

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, M. T. T., Awale, S., Tezuka, Y., Tran, Q. L., Watanabe, H., and Kadota, S., Xanthine Oxidase Inhibitory Activity of Vietnamese Medicinal Plants. Biol. Pharm. Bull., 27, 1414–1421 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Nagao, A., Seki, M., and Kobayashi, H., Inhibition of Xanthine Oxidase by Flavonoids. Biosci. Biotechnol. Biochem., 63, 1787–1790 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Pinto, C., Papa, D., Hubner, M., Mou, T. C., Lushington, G. H., and Seifert, R., Activation and inhibition of adenylyl cyclase isoforms by forskolin analogs. J. Pharmacol. Exp. Ther., 325, 27–36 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Shi, R., Huang, Q., Zhu, X., Ong, Y. B., Zhao, B., Lu, J., Ong, C. N., and Shen, H. M., Luteolin sensitizes the anticancer effect of cisplatin via c-Jun NH2-terminal kinase-mediated p53 phosphorylation and stabilization. Mol. Cancer Ther., 6, 1338 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C., Measurement of protein using bicinchoninic acid. Anal. Biochem., 150, 76–85 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Woerdenbag, H. J., Merfort, I., Passreiter, C. M., Schmidt, T. J., Willuhn, G., van Uden, W., Pras, N., Kampinga, H. H., and Konings, A. W., Cytotoxicity of flavonoids and sesquiterpene lactones from Arnica species against the GLC4 and the COLO 320 cell lines. Planta Med., 60, 434–437 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Wong, G. and Pawelek, J., Melanocyte-stimulating hormone promotes activation of pre-existing tyrosinase molecules in Cloudman S91 melanoma cells. Nature., 255, 644–646 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Ziyan, L., Yongmei, Z., Nan, Z., Ning, T., and Baolin, L., Evaluation of the anti-inflammatory activity of luteolin in experimental animal models. Planta Med., 73, 221–226 (2007).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Soo Sim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, M.Y., Song, H.S., Hur, H.S. et al. Whitening activity of luteolin related to the inhibition of cAMP pathway in α-MSH-stimulated B16 melanoma cells. Arch. Pharm. Res. 31, 1166–1171 (2008). https://doi.org/10.1007/s12272-001-1284-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-001-1284-4

Key words

Navigation