Skip to main content

Advertisement

Log in

Wearables in Cardiovascular Disease

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Wearable devices stand to revolutionize the way healthcare is delivered. From consumer devices that provide general health information and screen for medical conditions to medical-grade devices that allow collection of larger datasets that include multiple modalities, wearables have a myriad of potential uses, especially in cardiovascular disorders. In this review, we summarize the underlying technologies employed in these devices and discuss the regulatory and economic aspects of such devices as well as the future implications of their use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AFib:

Atrial fibrillation

BCG:

Ballistocardiography

BI:

Bioimpedance

BP:

Blood pressure

ECG:

Electrocardiography

HR:

Heart rate

HRV:

Heart rate variability

LED:

Light emitting diode

NIR:

Near-infrared

NSR:

Normal sinus rhythm

PPG:

Photoplethysmography

SCG:

Seismocardiography

SpO2:

Peripheral arterial oxygen saturation

References

  1. Dias D, Paulo Silva Cunha J. Wearable health devices-vital sign monitoring, systems and technologies. Sensors. 2018;18:2414.

    Article  PubMed  PubMed Central  Google Scholar 

  2. DeVore AD, Wosik J, Hernandez AF. The future of wearables in heart failure patients. JACC Heart Fail. 2019;7:922–32.

    Article  PubMed  Google Scholar 

  3. Moore K, O’Shea E, Kenny L, et al. Older adults’ experiences with using wearable devices: qualitative systematic review and meta-synthesis. JMIR MHealth UHealth. 2021;9:e23832–e23832.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Marra C, Chen JL, Coravos A, Stern AD. Quantifying the use of connected digital products in clinical research. Npj Digit Med. 2020;3:50.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Center for Devices and Radiological Health (2018) Learn if a medical device has been cleared by FDA for marketing. In: US Food Drug Adm. https://www.fda.gov/medical-devices/consumers-medical-devices/learn-if-medical-device-has-been-cleared-fda-marketing. Accessed 28 Jun 2022

  6. Groenendaal W, Lee S, van Hoof C. Wearable bioimpedance monitoring: viewpoint for application in chronic conditions. JMIR Biomed Eng. 2021;6:e22911.

    Article  Google Scholar 

  7. Perez MV, Mahaffey KW, Hedlin H, et al. Large-scale assessment of a smartwatch to identify atrial fibrillation. N Engl J Med. 2019;381:1909–17.

    Article  PubMed  PubMed Central  Google Scholar 

  8. µCor heart failure and arrhythmia management system. In: 510k Premarket Notif. https://www.accessdata.fda.gov/scripts/cdrh/Cfdocs/cfpmn/pmn.cfm?id=K172510. Accessed 28 Jun 2022

  9. Darling CE, Dovancescu S, Saczynski JS, Riistama J, Sert Kuniyoshi F, Rock J, Meyer TE, McManus DD. Bioimpedance-based heart failure deterioration prediction using a prototype fluid accumulation vest-mobile phone dyad: an observational study. JMIR Cardio. 2017;1:e1.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Reiter H, Muehlsteff J, Sipilä A (2011) Medical application and clinical validation for reliable and trustworthy physiological monitoring using functional textiles experience from the HeartCycle and MyHeart project In Annu. Int. Conf IEEE Eng Med Biol Soc. 3270–3273

  11. FDA grants breakthrough designation to cardiosense’s heart monitoring software. https://www.fdanews.com/articles/206626-fda-grants-breakthrough-designation-to-cardiosenses-heart-monitoring-software. Accessed 28 Jun 2022

  12. Dagher L, Shi H, Zhao Y, Marrouche NF. Wearables in cardiology: here to stay. Heart Rhythm. 2020;17:889–95.

    Article  PubMed  Google Scholar 

  13. Sun Y, Thakor N. Photoplethysmography revisited: from contact to noncontact, from point to imaging. IEEE Trans Biomed Eng. 2016;63:463–77.

    Article  PubMed  Google Scholar 

  14. Kamišalić A, Fister I, Turkanović M, Karakatič S. Sensors and functionalities of non-invasive wrist-wearable devices: a review. Sensors. 2018;18:1714.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jihyoung Lee, Matsumura K, Yamakoshi K, Rolfe P, Tanaka S, Yamakoshi T (2013) Comparison between red, green and blue light reflection photoplethysmography for heart rate monitoring during motion. In:35th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBC. IEEE, Osaka, pp 1724–1727

  16. Bunn JA, Navalta JW, Fountaine CJ, Reece JD. Current state of commercial wearable technology in physical activity monitoring 2015–2017. Int J Exerc Sci. 2018;11:503–15.

    PubMed  PubMed Central  Google Scholar 

  17. Blok S, Piek MA, Tulevski II, Somsen GA, Winter MM. The accuracy of heartbeat detection using photoplethysmography technology in cardiac patients. J Electrocardiol. 2021;67:148–57.

    Article  CAS  PubMed  Google Scholar 

  18. Cadmus-Bertram L, Gangnon R, Wirkus EJ, Thraen-Borowski KM, Gorzelitz-Liebhauser J. The accuracy of heart rate monitoring by some wrist-worn activity trackers. Ann Intern Med. 2017;166:610.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shcherbina A, Mattsson CM, Waggott D, Salisbury H, Christle JW, Hastie T, Wheeler MT, Ashley EA. Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. J Med. 2017;7:3.

    Google Scholar 

  20. Ishaque S, Khan N, Krishnan S. Trends in heart-rate variability signal analysis. Front Digit Health. 2021;3:639444.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Georgiou K, Larentzakis AV, Khamis NN, Alsuhaibani GI, Alaska YA, Giallafos EJ. Can wearable devices accurately measure heart rate variability? A systematic review Folia Med (Plovdiv). 2018. https://doi.org/10.2478/folmed-2018-0012.

    Article  PubMed  Google Scholar 

  22. Kinnunen H, Rantanen A, Kenttä T, Koskimäki H (2020) Feasible assessment of recovery and cardiovascular health: accuracy of nocturnal HR and HRV assessed via ring PPG in comparison to medical grade ECG. Physiol Meas 41:04NT01

  23. Hoog Antink C, Mai Y, Peltokangas M, Leonhardt S, Oksala N, Vehkaoja A. Accuracy of heart rate variability estimated with reflective wrist-PPG in elderly vascular patients. Sci Rep. 2021;11:8123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bayoumy K, Gaber M, Elshafeey A, et al. Smart wearable devices in cardiovascular care: where we are and how to move forward. Nat Rev Cardiol. 2021;18:581–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chacon PJ, Pu L, da Costa TH, Shin Y-H, Ghomian T, Shamkhalichenar H, Wu H-C, Irving BA, Choi J-W. A wearable pulse oximeter with wireless communication and motion artifact tailoring for continuous use. IEEE Trans Biomed Eng. 2019;66:1505–13.

    Article  PubMed  Google Scholar 

  26. Papini GB, Fonseca P, van Gilst MM, Bergmans JWM, Vullings R, Overeem S. Wearable monitoring of sleep-disordered breathing: estimation of the apnea–hypopnea index using wrist-worn reflective photoplethysmography. Sci Rep. 2020;10:13512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kwon S, Hong J, Choi E-K, Lee B, Baik C, Lee E, Jeong E-R, Koo B-K, Oh S, Yi Y. Detection of atrial fibrillation using a ring-type wearable device (CardioTracker) and deep learning analysis of photoplethysmography signals: prospective observational proof-of-concept study. J Med Internet Res. 2020;22:e16443.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ramesh J, Solatidehkordi Z, Aburukba R, Sagahyroon A. Atrial fibrillation classification with smart wearables using short-term heart rate variability and deep convolutional neural networks. Sensors. 2021;21:7233.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hosanee M, Chan G, Welykholowa K, et al. Cuffless single-site photoplethysmography for blood pressure monitoring. J Clin Med. 2020;9:723.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Elgendi M, Fletcher R, Liang Y, Howard N, Lovell NH, Abbott D, Lim K, Ward R. The use of photoplethysmography for assessing hypertension. Npj Digit Med. 2019;2:60.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kachel E, Constantini K, Nachman D, Carasso S, Littman R, Eisenkraft A, Gepner Y. A pilot study of blood pressure monitoring after cardiac surgery using a wearable, non-invasive sensor. Front Med. 2021;8:693926.

    Article  Google Scholar 

  32. Nachman D, Gepner Y, Goldstein N, Kabakov E, Ishay AB, Littman R, Azmon Y, Jaffe E, Eisenkraft A. Comparing blood pressure measurements between a photoplethysmography-based and a standard cuff-based manometry device. Sci Rep. 2020;10:16116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Duncker D, Ding WY, Etheridge S, Noseworthy PA, Veltmann C, Yao X, Bunch TJ, Gupta D. Smart wearables for cardiac monitoring—real-world use beyond atrial fibrillation. Sensors. 2021;21:2539.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ajmal B-A, Rodriguez AJ, Du Le VN, Ramella-Roman JC. Monte Carlo analysis of optical heart rate sensors in commercial wearables: the effect of skin tone and obesity on the photoplethysmography (PPG) signal. Biomed Opt Express. 2021;12:7445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rentz LE, Ulman HK, Galster SM. Deconstructing commercial wearable technology: contributions toward accurate and free-living monitoring of sleep. Sensors. 2021;21:5071.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Santala OE, Lipponen JA, Jäntti H, et al. Necklace-embedded electrocardiogram for the detection and diagnosis of atrial fibrillation. Clin Cardiol. 2021;44:620–6.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hermans ANL, Gawalko M, Dohmen L, et al. Mobile health solutions for atrial fibrillation detection and management: a systematic review. Clin Res Cardiol. 2021. https://doi.org/10.1007/s00392-021-01941-9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Imtiaz SA. A systematic review of sensing technologies for wearable sleep staging. Sensors. 2021;21:1562.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sana F, Isselbacher EM, Singh JP, Heist EK, Pathik B, Armoundas AA. Wearable devices for ambulatory cardiac monitoring. J Am Coll Cardiol. 2020;75:1582–92.

    Article  PubMed  PubMed Central  Google Scholar 

  40. G. S, R. V, K.p. S,. Diabetes detection using deep learning algorithms. ICT Express. 2018;4:243–6.

    Article  Google Scholar 

  41. Patel NJ, Atti V, Mitrani RD, Viles-Gonzalez JF, Goldberger JJ. Global rising trends of atrial fibrillation: a major public health concern. Heart. 2018;104:1989–90.

    Article  PubMed  Google Scholar 

  42. (2020) FDA-cleared electrocardiogram monitor App is available in the US starting today on Galaxy Watch3 and Galaxy Watch Active2. Samsung Newsroom

  43. (2020) Fitbit’s Sense smartwatch gets FDA clearance for EKG app. The Verge

  44. Isakadze N, Martin SS. How useful is the smartwatch ECG? Trends Cardiovasc Med. 2020;30:442–8.

    Article  PubMed  Google Scholar 

  45. Bumgarner JM, Lambert CT, Hussein AA, Cantillon DJ, Baranowski B, Wolski K, Lindsay BD, Wazni OM, Tarakji KG. Smartwatch algorithm for automated detection of atrial fibrillation. J Am Coll Cardiol. 2018;71:2381–8.

    Article  PubMed  Google Scholar 

  46. Scientific Sessions. In: professional.heart.org. https://professional.heart.org/en/meetings/scientific-sessions. Accessed 20 Jan 2022

  47. New study shows Cardiologs’ deep learning AI outperforms the Apple Watch ECG algorithm in detecting atrial arrhythmias. Cardiologs

  48. Steinhubl SR, Waalen J, Edwards AM, et al. Effect of a home-based wearable continuous ECG monitoring patch on detection of undiagnosed atrial fibrillation: the mSToPS randomized clinical trial. JAMA. 2018;320:146.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schreiber D, Sattar A, Drigalla D, Higgins S. Ambulatory cardiac monitoring for discharged emergency department patients with possible cardiac arrhythmias. West J Emerg Med. 2014;15:194–8.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kaura A, Sztriha L, Chan FK, Aeron-Thomas J, Gall N, Piechowski-Jozwiak B, Teo JT. Early prolonged ambulatory cardiac monitoring in stroke (EPACS): an open-label randomised controlled trial. Eur J Med Res. 2019;24:25.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gilgen-Ammann R, Schweizer T, Wyss T. RR interval signal quality of a heart rate monitor and an ECG Holter at rest and during exercise. Eur J Appl Physiol. 2019;119:1525–32.

    Article  PubMed  Google Scholar 

  52. Lazaro J, Reljin N, Hossain M-B, Noh Y, Laguna P, Chon KH. Wearable armband device for daily life electrocardiogram monitoring. IEEE Trans Biomed Eng. 2020;67:3464–73.

    Article  PubMed  Google Scholar 

  53. Lyon A, Mincholé A, Martínez JP, Laguna P, Rodriguez B (2017) Supplementary material from “Computational techniques for ECG analysis and interpretation in light of their contribution to medical advances.” https://doi.org/10.6084/M9.FIGSHARE.C.3956569

  54. Kraus WE, Powell KE, Haskell WL, Janz KF, Campbell WW, Jakicic JM, Troiano RP, Sprow K, Torres A, Piercy KL. Physical Activity, all-cause and cardiovascular mortality, and cardiovascular disease. Med Sci Sports Exerc. 2019;51:1270–81.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Johansson MS, Søgaard K, Prescott E, Marott JL, Schnohr P, Holtermann A, Korshøj M. Can we walk away from cardiovascular disease risk or do we have to ‘huff and puff’? A cross-sectional compositional accelerometer data analysis among adults and older adults in the Copenhagen City Heart Study. Int J Behav Nutr Phys Act. 2020;17:84.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Patel MS, Polsky D, Small DS, Park S-H, Evans CN, Harrington T, Djaraher R, Changolkar S, Snider CK, Volpp KG. Predicting changes in glycemic control among adults with prediabetes from activity patterns collected by wearable devices. Npj Digit Med. 2021;4:1–7.

    Article  Google Scholar 

  57. McConnell MV, Shcherbina A, Pavlovic A, et al. Feasibility of obtaining measures of lifestyle from a Smartphone App: the MyHeart counts cardiovascular health study. JAMA Cardiol. 2017;2:67–76.

    Article  PubMed  Google Scholar 

  58. Jeran S, Steinbrecher A, Pischon T. Prediction of activity-related energy expenditure using accelerometer-derived physical activity under free-living conditions: a systematic review. Int J Obes. 2016;40:1187–97.

    Article  CAS  Google Scholar 

  59. Westerterp KR. Doubly labelled water assessment of energy expenditure: principle, practice, and promise. Eur J Appl Physiol. 2017;117:1277–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brazeau A-S, Beaudoin N, Bélisle V, Messier V, Karelis AD, Rabasa-Lhoret R. Validation and reliability of two activity monitors for energy expenditure assessment. J Sci Med Sport. 2016;19:46–50.

    Article  PubMed  Google Scholar 

  61. Murakami H, Kawakami R, Nakae S, Yamada Y, Nakata Y, Ohkawara K, Sasai H, Ishikawa-Takata K, Tanaka S, Miyachi M. Accuracy of 12 wearable devices for estimating physical activity energy expenditure using a metabolic chamber and the doubly labeled water method: validation study. JMIR MHealth UHealth. 2019;7:e13938.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hodkinson A, Kontopantelis E, Adeniji C, van Marwijk H, McMillian B, Bower P, Panagioti M. Interventions using wearable physical activity trackers among adults with cardiometabolic conditions: a systematic review and meta-analysis. JAMA Netw Open. 2021;4:e2116382.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Jung MH, Namkoong K, Lee Y, Koh YJ, Eom K, Jang H, Jung W, Bae J, Park J. Wrist-wearable bioelectrical impedance analyzer with miniature electrodes for daily obesity management. Sci Rep. 2021;11:1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Krzesinski P, Sobotnicki A, Gacek A, Siebert J, Walczak A, Murawski P, Gielerak G. Noninvasive bioimpedance methods from the viewpoint of remote monitoring in heart failure. JMIR MHealth UHealth. 2021;9:e25937.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Cuba Gyllensten I, Bonomi AG, Goode KM, Reiter H, Habetha J, Amft O, Cleland JG. Early indication of decompensated heart failure in patients on home-telemonitoring: a comparison of prediction algorithms based on daily weight and noninvasive transthoracic bio-impedance. JMIR Med Inform. 2016;4:e3.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Huynh TH, Jafari R, Chung W-Y. An accurate bioimpedance measurement system for blood pressure monitoring. Sensors. 2018;18:2095.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kopczynska M, Barrett MP, Cloutier A, Farrer K, Taylor M, Burden S, Lal S. Body composition in patients with type 2 intestinal failure. Nutr Clin Pract. 2022;37:137–45.

    Article  CAS  PubMed  Google Scholar 

  68. Kamath SA, Drazner MH, Tasissa G, Rogers JG, Stevenson LW, Yancy CW. Correlation of impedance cardiography with invasive hemodynamic measurements in patients with advanced heart failure: the BioImpedance CardioGraphy (BIG) substudy of the Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness (ESCAPE) Trial. Am Heart J. 2009;158:217–23.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Munck K, Sørensen K, Struijk JJ, Schmidt SE. Multichannel seismocardiography: an imaging modality for investigating heart vibrations. Physiol Meas. 2020;41:115001.

    Article  PubMed  Google Scholar 

  70. Taebi A, Solar BE, Bomar AJ, Sandler RH, Mansy HA. Recent advances in seismocardiography. Vibration. 2019. https://doi.org/10.3390/vibration2010005.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zanetti JM, Tavakolian K. Seismocardiography: past, present and future. Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Int Conf. 2013;2013:7004–7.

    Google Scholar 

  72. Inan OT, Migeotte P-F, Park KS, et al. Ballistocardiography and seismocardiography: a review of recent advances. IEEE J Biomed Health Inform. 2015;19:1414–27.

    Article  PubMed  Google Scholar 

  73. Pinheiro E, Postolache O, Girão P. Theory and developments in an unobtrusive cardiovascular system representation: ballistocardiography. Open Biomed Eng J. 2010;4:201–16.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sahoo PK, Thakkar HK, Lee M-Y. A cardiac early warning system with multi channel SCG and ECG Monitoring for Mobile Health. Sensors. 2017. https://doi.org/10.3390/s17040711.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Inan OT, Baran Pouyan M, Javaid AQ, et al. Novel wearable seismocardiography and machine learning algorithms can assess clinical status of heart failure patients. Circ Heart Fail. 2018;11:e004313.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sørensen K, Poulsen MK, Karbing DS, Søgaard P, Struijk JJ, Schmidt SE. A clinical method for estimation of VO2max using seismocardiography. Int J Sports Med. 2020;41:661–8.

    Article  PubMed  Google Scholar 

  77. Dehkordi P, Bauer EP, Tavakolian K, Xiao ZG, Blaber AP, Khosrow-Khavar F. Detecting coronary artery disease using rest seismocardiography and gyrocardiography. Front Physiol. 2021;12:758727.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Cardiosense Cardiosense receives FDA breakthrough device designation for algorithm to identify patients at risk of decompensated heart failure.

  79. Castiglioni P, Faini A, Parati G, Di Rienzo M. Wearable seismocardiography. Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Int Conf. 2007;2007:3954–7.

    Google Scholar 

  80. Lo Presti D, Santucci F, Massaroni C, Formica D, Setola R, Schena E. A multi-point heart rate monitoring using a soft wearable system based on fiber optic technology. Sci Rep. 2021;11:21162.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Makinson DH. Changes in the ballistocardiogram after exercise in normal and abnormal subjects. Circulation. 1950;2:186–96.

    Article  CAS  PubMed  Google Scholar 

  82. Mandelbaum H, Mandelbaum RA. Studies utilizing the portable electromagnetic ballistocardiograph. II. The ballistocardiogram as a means of determining nicotine sensitivity. Circulation. 1952;5:885–91.

    Article  CAS  PubMed  Google Scholar 

  83. Etemadi M, Inan OT. Wearable ballistocardiogram and seismocardiogram systems for health and performance. J Appl Physiol. 2018;124:452–61.

    Article  PubMed  Google Scholar 

  84. Wiens A, Etemadi M, Klein L, Roy S, Inan OT. Wearable ballistocardiography: preliminary methods for mapping surface vibration measurements to whole body forces. Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Int Conf. 2014;2014:5172–5.

    Google Scholar 

  85. Aydemir VB, Nagesh S, Shandhi MMH, Fan J, Klein L, Etemadi M, Heller JA, Inan OT, Rehg JM. Classification of decompensated heart failure from clinical and home ballistocardiography. IEEE Trans Biomed Eng. 2020;67:1303–13.

    Article  PubMed  Google Scholar 

  86. Segura Anaya LH, Alsadoon A, Costadopoulos N, Prasad PWC. Ethical implications of user perceptions of wearable devices. Sci Eng Ethics. 2018;24:1–28.

    Article  CAS  PubMed  Google Scholar 

  87. Filkins BL, Kim JY, Roberts B, Armstrong W, Miller MA, Hultner ML, Castillo AP, Ducom J-C, Topol EJ, Steinhubl SR. Privacy and security in the era of digital health: what should translational researchers know and do about it? Am J Transl Res. 2016;8:1560–80.

    PubMed  PubMed Central  Google Scholar 

  88. Jiang D, Shi G. Research on data security and privacy protection of wearable equipment in healthcare. J Healthc Eng. 2021;2021:6656204.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Cilliers L. Wearable devices in healthcare: privacy and information security issues. Health Inf Manag J Health Inf Manag Assoc Aust. 2020;49:150–6.

    Google Scholar 

  90. (2017) Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017 on medical devices, amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009 and repealing Council Directives 90/385/EEC and 93/42/EEC (Text with EEA relevance. ).

  91. Johnson JA (2012) FDA Regulation of Medical Devices. undefined

  92. Jiang N, Mück JE, Yetisen AK. The regulation of wearable medical devices. Trends Biotechnol. 2020;38:129–33.

    Article  CAS  PubMed  Google Scholar 

  93. Johnson JA FDA Regulation of Medical Devices. 33

  94. Izmailova ES, Wagner JA, Perakslis ED. Wearable devices in clinical trials: hype and hypothesis. Clin Pharmacol Ther. 2018;104:42–52.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Raber I, McCarthy CP, Yeh RW. Health insurance and mobile health devices: opportunities and concerns. JAMA. 2019;321:1767–8.

    Article  PubMed  Google Scholar 

  96. Haynes N, Ezekwesili A, Nunes K, Gumbs E, Haynes M, Swain J. “Can you see my screen?” Addressing racial and ethnic disparities in telehealth. Curr Cardiovasc Risk Rep. 2021;15:23.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Wang L, Nielsen K, Goldberg J, Brown JR, Rumsfeld JS, Steinberg BA, Zhang Y, Matheny ME, Shah RU. Association of wearable device use with pulse rate and health care use in adults with atrial fibrillation. JAMA Netw Open. 2021;4:e215821.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wyatt KD, Poole LR, Mullan AF, Kopecky SL, Heaton HA. Clinical evaluation and diagnostic yield following evaluation of abnormal pulse detected using Apple Watch. J Am Med Inform Assoc JAMIA. 2020;27:1359–63.

    Article  PubMed  Google Scholar 

  99. Jakicic JM, Davis KK, Rogers RJ, King WC, Marcus MD, Helsel D, Rickman AD, Wahed AS, Belle SH. Effect of wearable technology combined with a lifestyle intervention on long-term weight loss: the IDEA randomized clinical trial. JAMA. 2016;316:1161–71.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Shuger SL, Barry VW, Sui X, McClain A, Hand GA, Wilcox S, Meriwether RA, Hardin JW, Blair SN. Electronic feedback in a diet- and physical activity-based lifestyle intervention for weight loss: a randomized controlled trial. Int J Behav Nutr Phys Act. 2011;8:41.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wearable Technology in 2021: five burning questions cardiologists are asking. In: Am. Coll. Cardiol. https://www.acc.org/latest-in-cardiology/articles/2021/03/01/01/42/http%3a%2f%2fwww.acc.org%2flatest-in-cardiology%2farticles%2f2021%2f03%2f01%2f01%2f42%2fwearable-technology-in-2021-five-burning-questions-cardiologists-are-asking. Accessed 22 Feb 2022

  102. Dunn J, Runge R, Snyder M. Wearables and the medical revolution. Pers Med. 2018;15:429–48.

    Article  CAS  Google Scholar 

  103. Pevnick JM, Birkeland K, Zimmer R, Elad Y, Kedan I. Wearable technology for cardiology: an update and framework for the future. Trends Cardiovasc Med. 2018;28:144–50.

    Article  PubMed  Google Scholar 

  104. Anchouche K, Elharram M, Oulousian E, et al. Use of actigraphy (wearable digital sensors to monitor activity) in heart failure randomized clinical trials: a scoping review. Can J Cardiol. 2021;37:1438–49.

    Article  PubMed  Google Scholar 

  105. (2022) IEEE standard for wearable consumer electronic devices–overview and architecture. IEEE Std 360 1–35

  106. Redfield MM, Anstrom KJ, Levine JA, et al. Isosorbide mononitrate in heart failure with preserved ejection fraction. N Engl J Med. 2015;373:2314–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Al-Kaisey AM, Koshy AN, Ha FJ, Spencer R, Toner L, Sajeev JK, Teh AW, Farouque O, Lim HS. Accuracy of wrist-worn heart rate monitors for rate control assessment in atrial fibrillation. Int J Cardiol. 2020;300:161–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Perry Wilson.

Ethics declarations

Ethics approval

This article did not involve research in human participants or animals.

Conflict of interest

ND works under contract with the Centers for Medicare and Medicaid Services to develop and maintain performance measures used for public reporting and pay for performance programs. ND reports research grants and consulting for Amgen, Astra Zeneca, Boehringer Ingelheim, Bristol Myers Squibb, Cytokinetics, Novartis, SC Pharmaceuticals, and Vifor.

FPW is supported by NIH grants (R01DK113191, P30DK079310), AHRQ grant (R01HS027626) and reports research support from AstraZeneca, Whoop, Vifor Pharma and Boehringer Ingelheim.

Additional information

Associate Editor Abhinav Sharma oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors Sanchit Kumar, Angela M. Victoria-Castro, and Hannah Melchinger are co-first authors.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Victoria-Castro, A.M., Melchinger, H. et al. Wearables in Cardiovascular Disease. J. of Cardiovasc. Trans. Res. 16, 557–568 (2023). https://doi.org/10.1007/s12265-022-10314-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-022-10314-0

Keywords

Navigation