Skip to main content

Advertisement

Log in

LncRNA LINC00281/Annexin A2 Regulates Vascular Smooth Muscle Cell Phenotype Switching via the Nuclear Factor-Kappa B Signaling Pathway

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Abnormal phenotype switch in vascular smooth muscle cells (VSMCs) plays an important role in the initiation and progression of vascular proliferative diseases. Annexin A2 (ANXA2), related to the pro-inflammatory response, contributes to the proliferation and migration of VSMCs. This study explored the mechanisms involved in the regulation of VSMC phenotype modulation via ANXA2. The results revealed that ANXA2 promotes the phosphorylation of p65 and co-translocates with p65 into the nucleus, resulting in VSMC proliferation, migration, and dedifferentiation. Based on bioinformatics predictions and RNA immunoprecipitation assays, LINC00281 was confirmed to be an upstream regulator of ANXA2. Taken together, ANXA2, which is negatively regulated by the long noncoding RNA (lncRNA) LINC00281, has significant importance in the regulation of VSMC proliferation, migration, and phenotype switching via the nuclear factor-kappa B (NF-кB) p65 signaling pathway. This indicates that the lncRNA LINC00281/ANXA2/NF-кB p65 signaling pathway might be a new therapeutic target for vascular proliferative diseases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LncRNA:

Long noncoding RNA

ANXA2:

Annexin A2

NF-кB:

Nuclear factor-kappa B

VSMCs:

Vascular smooth muscle cells

CVDs:

Cardiovascular diseases

α-SMA:

α-Smooth muscle actin

OPN:

Osteopontin

PCNA:

Proliferating cell nuclear antigen

PDGF:

Platelet-derived growth factor

DMEM:

Dulbecco’s modified Eagle’s medium

si-NC:

Small interfering negative control RNA

RT-PCR:

Real-time polymerase chain reaction

CCK-8:

Cell counting kit-8

MAPK:

Mitogen-activated protein kinase

IкBα:

Inhibitor of NF-кB-α

PDTC:

Pyrrolidine dithiocarbamate

SVM:

Support vector machine

RF:

Random forest

References

  1. Schiffrin, E. L. (2012). Vascular remodeling in hypertension: Mechanisms and treatment. Hypertension, 59(2), 367–374.

    Article  CAS  PubMed  Google Scholar 

  2. Zeng, Z., Xia, L., Fan, X., Ostriker, A. C., Yarovinsky, T., Su, M., Zhang, Y., Peng, X., Xie, Y., Pi, L., Gu, X., Chung, S. K., Martin, K. A., Liu, R., Hwa, J., & Tang, W. H. (2019). Platelet-derived mir-223 promotes a phenotypic switch in arterial injury repair. The Journal of Clinical Investigation, 129(3), 1372–1386.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Xi, Y., Ju, R., & Wang, Y. (2020). Roles of annexin a protein family in autophagy regulation and therapy. Biomedicine & Pharmacotherapy, 130, 110591.

    Article  CAS  Google Scholar 

  4. Dallacasagrande, V., & Hajjar, K. A. (2020). Annexin a2 in inflammation and host defense. Cells, 9(6), 1499.

    Article  CAS  PubMed Central  Google Scholar 

  5. Lin, X., Zhu, T., Xu, F., Zhong, J. Y., Li, F., Shan, S. K., et al. (2020). Plasma exosomes derived from patients with end-stage renal disease and renal transplant recipients have different effects on vascular calcification. Frontiers Cell Developmental  Biology, 8, 618228.

    Article  Google Scholar 

  6. Zhang, C., Zhou, T., Chen, Z., Yan, M., Li, B., Lv, H., Wang, C., Xiang, S., Shi, L., Zhu, Y., & Ai, D. (2020). Coupling of integrin α5 to annexin a2 by flow drives endothelial activation. Circulation Research, 127(8), 1074–1090.

    Article  CAS  PubMed  Google Scholar 

  7. Cesarman-Maus, G., Cantú-Brito, C., Barinagarrementeria, F., Villa, R., Reyes, E., Sanchez-Guerrero, J., Hajjar, K. A., & Latorre, E. G. (2011). Autoantibodies against the fibrinolytic receptor, annexin a2, in cerebral venous thrombosis. Stroke, 42(2), 501–503.

    Article  CAS  PubMed  Google Scholar 

  8. Nagy, A., Pethő, D., Gesztelyi, R., Juhász, B., Balla, G., Szilvássy, Z., Balla, J., & Gáll, T. (2021). Bgp-15 inhibits hyperglycemia-aggravated vsmc calcification induced by high phosphate. International Journal of Molecular Sciences, 22(17), 9263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Roskoski, R., Jr. (2018). The role of small molecule platelet-derived growth factor receptor (pdgfr) inhibitors in the treatment of neoplastic disorders. Pharmacological Research, 129, 65–83.

    Article  CAS  PubMed  Google Scholar 

  10. Beermann, J., Piccoli, M. T., Viereck, J., & Thum, T. (2016). Non-coding rnas in development and disease: Background, mechanisms, and therapeutic approaches. Physiological Reviews, 96(4), 1297–1325.

    Article  CAS  PubMed  Google Scholar 

  11. He, X., Lian, Z., Yang, Y., Wang, Z., Fu, X., Liu, Y., et al. (2020). Long non-coding rna pebp1p2 suppresses proliferative vsmcs phenotypic switching and proliferation in atherosclerosis. Molecular therapy Nucleic acids, 22, 84–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, S., Zhao, S., Han, X., Zhang, Y., Jin, X., Yuan, Y., et al. (2021). Lnc-c2orf63–4–1 confers vsmc homeostasis and prevents aortic dissection formation via stat3 interaction. Frontiers in Cell and Developmental Biology, 9, 792051.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Karki, P., Johnson, J., Jr., Son, D. S., Aschner, M., & Lee, E. (2017). Transcriptional regulation of human transforming growth factor-α in astrocytes. Molecular Neurobiology, 54(2), 964–976.

    Article  CAS  PubMed  Google Scholar 

  14. Zhu, J., Liu, B., Wang, Z., Wang, D., Ni, H., Zhang, L., & Wang, Y. (2019). Exosomes from nicotine-stimulated macrophages accelerate atherosclerosis through mir-21-3p/pten-mediated vsmc migration and proliferation. Theranostics, 9(23), 6901–6919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, W., Lin, J., Li, B., Cao, S., Li, H., Zhao, J., Liu, K., Li, Y., Li, Y., & Sun, S. (2020). Screening and functional prediction of differentially expressed circrnas in proliferative human aortic smooth muscle cells. Journal of Cellular and Molecular Medicine, 24(8), 4762–4772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yin, S., Lu, K., Tan, T., Tang, J., Wei, J., Liu, X., Hu, X., Wan, H., Huang, W., Fan, Y., Xie, D., & Yu, Y. (2020). Transcriptomic and open chromatin atlas of high-resolution anatomical regions in the rhesus macaque brain. Nature Communications, 11(1), 474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zeng, J. W., Chen, B. Y., Lv, X. F., Sun, L., Zeng, X. L., Zheng, H. Q., Du, Y. H., Wang, G. L., Ma, M. M., & Guan, Y. Y. (2018). Transmembrane member 16a participates in hydrogen peroxide-induced apoptosis by facilitating mitochondria-dependent pathway in vascular smooth muscle cells. British Journal of Pharmacology, 175(18), 3669–3684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lu, H. Y., Hsu, H. L., Li, C. H., Li, S. J., Lin, S. J., Shih, C. M., & Shih, C. C. (2021). Hydrogen sulfide attenuates aortic remodeling in aortic dissection associating with moderated inflammation and oxidative stress through a no-dependent pathway. Antioxidants (Basel), 10(5), 682.

    Article  Google Scholar 

  19. Yin, D., Hu, Z. Q., Luo, C. B., Wang, X. Y., Xin, H. Y., Sun, R. Q., et al. (2021). Linc01133 promotes hepatocellular carcinoma progression by sponging mir-199a-5p and activating annexin a2. Clinical and Translational Medicine, 11(5), e409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fan, Y., Si, W., Ji, W., Wang, Z., Gao, Z., Tian, R., Song, W., Zhang, H., Niu, R., & Zhang, F. (2019). Rack1 mediates tyrosine phosphorylation of anxa2 by src and promotes invasion and metastasis in drug-resistant breast cancer cells. Breast Cancer Research, 21(1), 66.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang, K., Zhang, T., Lei, Y., Li, X., Jiang, J., Lan, J., Liu, Y., Chen, H., Gao, W., Xie, N., Chen, Q., Zhu, X., Liu, X., Xie, K., Peng, Y., Nice, E. C., Wu, M., Huang, C., & Wei, Y. (2018). Identification of anxa2 (annexin a2) as a specific bleomycin target to induce pulmonary fibrosis by impeding tfeb-mediated autophagic flux. Autophagy, 14(2), 269–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, Y., Cheng, Y. S., Yin, X. Q., Yu, G., & Jia, B. L. (2019). Anxa2 gene silencing attenuates obesity-induced insulin resistance by suppressing the nf-κb signaling pathway. American Journal of Physiology. Cell Physiology, 316(2), C223-c234.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, Y., Chen, K., Cai, Y., Cai, Y., Yuan, X., Wang, L., Wu, Z., & Wu, Y. (2017). Annexin a2 could enhance multidrug resistance by regulating nf-κb signaling pathway in pediatric neuroblastoma. Journal of Experimental & Clinical Cancer Research, 36(1), 111.

    Article  Google Scholar 

  24. Zhang, L., Ge, C., Zhao, F., Zhang, Y., Wang, X., Yao, M., & Li, J. (2016). Nrbp2 overexpression increases the chemosensitivity of hepatocellular carcinoma cells via akt signaling. Cancer Research, 76(23), 7059–7071.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, Y., Zhou, Z. H., Bugge, T. H., & Wahl, L. M. (2007). Urokinase-type plasminogen activator stimulation of monocyte matrix metalloproteinase-1 production is mediated by plasmin-dependent signaling through annexin a2 and inhibited by inactive plasmin. The Journal of Immunology, 179(5), 3297–3304.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, C., Niu, K., Lian, P., Hu, Y., Shuai, Z., Gao, S., Ge, S., Xu, T., Xiao, Q., & Chen, Z. (2021). Pathological bases and clinical application of long noncoding rnas in cardiovascular diseases. Hypertension, 78(1), 16–29.

    Article  CAS  PubMed  Google Scholar 

  27. Guo, J., Fang, W., Sun, L., Lu, Y., Dou, L., Huang, X., et al. (2018). Ultraconserved element uc.372 drives hepatic lipid accumulation by suppressing mir-195/mir4668 maturation. Nature Communications, 9(1), 612.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kallen, A. N., Zhou, X. B., Xu, J., Qiao, C., Ma, J., Yan, L., Lu, L., Liu, C., Yi, J. S., Zhang, H., Min, W., Bennett, A. M., Gregory, R. I., Ding, Y., & Huang, Y. (2013). The imprinted h19 lncrna antagonizes let-7 micrornas. Molecular Cell, 52(1), 101–112.

    Article  CAS  PubMed  Google Scholar 

  29. Ou, C., Sun, Z., He, X., Li, X., Fan, S., Zheng, X., et al. (2020). Targeting yap1/linc00152/fscn1 signaling axis prevents the progression of colorectal cancer. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 7(3), 1901380.

    CAS  Google Scholar 

  30. Dykes, I. M., & Emanueli, C. (2017). Transcriptional and post-transcriptional gene regulation by long non-coding rna. Genomics, Proteomics & Bioinformatics, 15(3), 177–186.

    Article  Google Scholar 

  31. Singh, S., Nguyen, H. C., Ehsan, M., Michels, D. C. R., Singh, P., Qadura, M., & Singh, K. K. (2021). Pravastatin-induced changes in expression of long non-coding and coding rnas in endothelial cells. Physiological Reports, 9(1), e14661.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. S Sun et al., who uploaded the microarray data to the NCBI.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81800363), the Provincial Natural Science Foundation of Fujian (No. 2018J01240), and the Fujian Provincial Medical Innovation Project (No. 2018-CX-4).

Author information

Authors and Affiliations

Authors

Contributions

CH designed the whole study; CL, WH, and Nfornah Maboh performed the experiments. MGW and WXY analyzed the data. CL wrote the paper. CH revised and edited the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Hui Chen.

Ethics declarations

Ethics Approval and Consent to Participate

No animal studies were carried out by the authors of this article.

Human Subjects/Informed Consent

No human studies were carried out by the authors of this article.

Consent for Publication

Not applicable.

Conflicts of Interest

The authors declare no competing interests.

Additional information

Associate Editor Junjie Xiao oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1316 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, L., Wang, H., Maboh, R. et al. LncRNA LINC00281/Annexin A2 Regulates Vascular Smooth Muscle Cell Phenotype Switching via the Nuclear Factor-Kappa B Signaling Pathway. J. of Cardiovasc. Trans. Res. 15, 971–984 (2022). https://doi.org/10.1007/s12265-022-10242-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-022-10242-z

Keywords

Navigation