Skip to main content
Log in

Macrophage Nuclear Receptor Corepressor 1 Deficiency Protects Against Ischemic Stroke in Mice

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Microglia/macrophage activation plays an essential role in Ischemic stroke (IS). Nuclear receptor corepressor 1 (NCoR1) has been identified as a vital regulator in macrophages. The present study aims to explore the functions of macrophage NCoR1 in IS. Macrophage NCoR1 knockout (MNKO) mice and littermate control mice were subjected to middle cerebral artery occlusion (MCAO). Our data showed that macrophage NCoR1 deficiency significantly reduced the infarct size and infarct volume as well as brain edema after MCAO. Additionally, MNKO induced less microglia/macrophage infiltration and activation, neuroinflammation, apoptosis of neuronal cells, and BBB disruption in brains after IS. Mechanistic studies revealed that NCoR1 interacted with LXRβ in microglia and MNKO impaired the activation of the Nuclear factor-κB signaling pathway in brains after IS. Our data demonstrated that macrophage NCoR1 deficiency inhibited microglia/macrophage activation and protected against IS. Targeting NCoR1 in microglia/macrophage may be a potential approach for IS treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CNS:

Central nervous system

IS:

Ischemic stroke

MCAO:

Middle cerebral artery occlusion

NCoR1:

Nuclear receptor corepressor1

MNKO:

Macrophage NCoR1 knockout

LC:

Littermate control

TTC:

Triphenyl tetrazolium chloride

Iba-1:

Ionized calcium binding adaptor molecule-1

Tunnel:

Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling

BBB:

Blood-brain barrier

MMP-9:

Matrix metalloprotein-9

ZO-1:

Zonula occludens 1

References

  1. Campbell, B., De, S., Macleod, M., Coutts, S., Schwamm, L., Davis, S., et al. (2019). Ischaemic stroke. Nature Reviews. Disease Primers, 5(1), 70. https://doi.org/10.1038/s41572-019-0118-8.

    Article  PubMed  Google Scholar 

  2. Feigin, V., Nguyen, G., Cercy, K., Johnson, C., Alam, T., Parmar, P., et al. (2018). Global, regional, and country-specific lifetime risks of Stroke, 1990 and 2016. New England Journal of Medicine, 379(25), 2429–2437. https://doi.org/10.1056/NEJMoa1804492.

    Article  PubMed  Google Scholar 

  3. Phipps, M., & Cronin, C. (2020). Management of acute ischemic stroke. BMJ, 368, l6983. https://doi.org/10.1136/bmj.l6983.

    Article  PubMed  Google Scholar 

  4. Khandelwal, P., Yavagal, D., & Sacco, R. (2016). Acute ischemic stroke intervention. Journal of the American College of Cardiology, 67(22), 2631–2644. https://doi.org/10.1016/j.jacc.2016.03.555.

    Article  PubMed  Google Scholar 

  5. Fu, Y., Liu, Q., Anrather, J., & Shi, F. (2015). Immune interventions in stroke. Nature Reviews. Neurology, 11(9), 524–535. https://doi.org/10.1038/nrneurol.2015.144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Wang, P., Shao, B., Deng, Z., Chen, S., Yue, Z., & Miao, C. (2018). Autophagy in ischemic stroke. Progress in Neurobiology, 163–164, 98–117. https://doi.org/10.1016/j.pneurobio.2018.01.001.

    Article  PubMed  CAS  Google Scholar 

  7. Jayaraj, R., Azimullah, S., Beiram, R., Jalal, F., & Rosenberg, G. (2019). Neuroinflammation: Friend and foe for ischemic stroke. Journal of Neuroinflammation, 16(1), 142. https://doi.org/10.1186/s12974-019-1516-2.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ma, Y., Wang, J., Wang, Y., & Yang, G. (2017). The biphasic function of microglia in ischemic stroke. Progress in Neurobiology, 157, 247–272. https://doi.org/10.1016/j.pneurobio.2016.01.005.

    Article  PubMed  CAS  Google Scholar 

  9. Kanazawa, M., Ninomiya, I., Hatakeyama, M., Takahashi, T., & Shimohata, T. (2017). Microglia and monocytes/macrophages polarization reveal novel therapeutic mechanism against stroke. International Journal of Molecular Sciences, 18(10), 2135. https://doi.org/10.3390/ijms18102135.

    Article  PubMed Central  CAS  Google Scholar 

  10. García-Culebras, A., Durán-Laforet, V., Peña-Martínez, C., Ballesteros, I., Pradillo, J., Díaz-Guzmán, J., et al. (2018). Myeloid cells as therapeutic targets in neuroinflammation after stroke: Specific roles of neutrophils and neutrophil-platelet interactions. Journal of Cerebral Blood Flow and Metabolism, 38(12), 2150–2164. https://doi.org/10.1177/0271678X18795789.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xiong, X., Liu, L., & Yang, Q. (2016). Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Progress in Neurobiology, 142, 23–44. https://doi.org/10.1016/j.pneurobio.2016.05.001.

    Article  PubMed  CAS  Google Scholar 

  12. Belov, K., Kriska, J., Tureckova, J., & Anderova, M. (2020). Ischemia-triggered glutamate excitotoxicity from the perspective of glial cells. Frontiers in Cellular Neuroscience, 14, 51. https://doi.org/10.3389/fncel.2020.00051.

    Article  CAS  Google Scholar 

  13. Stoll, G., Jander, S., & Schroete, R. M. (1998). Inflammation and glial responses in ischemic brain lesions. Progress in Neurobiology, 56(2), 149–71. https://doi.org/10.1016/s0301-0082(98)00034-3.

    Article  PubMed  CAS  Google Scholar 

  14. Mottis, A., Mouchiroud, L., & Auwerx, J. (2013). Emerging roles of the corepressors NCoR1 and SMRT in homeostasis. Genes & Development, 27(8), 819–835. https://doi.org/10.1101/gad.214023.113.

    Article  CAS  Google Scholar 

  15. Oppi, S., Nusser-Stein, S., Blyszczuk, P., Wang, X., Jomard, A., Marzolla, V., et al. (2020). Macrophage NCOR1 protects from atherosclerosis by repressing a pro-atherogenic PPARγ signature. European Heart Journal, 41(9), 995–1005. https://doi.org/10.1093/eurheartj/ehz667.

    Article  PubMed  CAS  Google Scholar 

  16. Saito, T., Kuma, A., Sugiura, Y., Ichimura, Y., Obata, M., Kitamura, H., et al. (2019). Autophagy regulates lipid metabolism through selective turnover of NCoR1. Nature Communications, 10(1), 1567. https://doi.org/10.1038/s41467-019-08829-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Jo, Y., Ryu, D., Maida, A., Wang, X., Evans, R. M., Schoonjans, K., et al. (2015). Phosphorylation of the nuclear receptor corepressor 1 by protein kinase B switches its corepressor targets in the liver in mice. Hepatology, 62(5), 1606–1618. https://doi.org/10.1002/hep.27907.

    Article  PubMed  CAS  Google Scholar 

  18. Li, C., Sun, X., Chen, B., Zeng, M., Du, L., Liu, T., et al. (2019). Nuclear receptor corepressor 1 represses cardiac hypertrophy. EMBO Molecular Medicine, 11(11), e9127. https://doi.org/10.15252/emmm.201809127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Li, P., Spann, N., Kaikkonen, M., Lu, M., Oh, D., Fox, J., et al. (2013). NCoR repression of LXRs restricts macrophage biosynthesis of insulin-sensitizing omega 3 fatty acids. Cell, 155(1), 200–214. https://doi.org/10.1016/j.cell.2013.08.054.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Koellhoffer, E., & McCullough, L. (2012). The effects of estrogen in ischemic stroke. Translational Stroke Research, 4(4), 390–401. https://doi.org/10.1007/s12975-012-0230-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Belayev, L., Alonso, O., Busto, R., Zhao, W., & Ginsberg, M. (1996). Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke, 27(9),1616–22; discussion 1623. https://doi.org/10.1161/01.str.27.9.1616.

  22. Belayev, L., Hong, S., Freitas, R., Menghani, H., Marcell, S., Khoutorova, L., et al. (2020). DHA modulates MANF and TREM2 abundance, enhances neurogenesis, reduces infarct size, and improves neurological function after experimental ischemic stroke. CNS Neuroscience & Therapeutics, 26(11), 1155–1167. https://doi.org/10.1111/cns.13444.

    Article  CAS  Google Scholar 

  23. Yang, J., Liu, C., Du, X., Liu, M., Ji, X., Du, H., et al. (2018). Hypoxia inducible factor 1α plays a key role in remote ischemic preconditioning against stroke by modulating inflammatory responses in rats. Journal of the American Heart Association, 7(5), e007589. https://doi.org/10.1161/JAHA.117.007589.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Du, L., Sun, J., Zhang, W., Wang, Y., Zhu, H., Liu, T., et al. (2020). Macrophage NCOR1 deficiency ameliorates myocardial infarction and neointimal hyperplasia in mice. Journal of the American Heart Association, 9(15), e015862. https://doi.org/10.1161/JAHA.120.015862.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sillerud, L., Yang, Y., Yang, L., Duval, K., Thompson, J., & Yang, Y. (2020). Longitudinal monitoring of microglial/macrophage activation in ischemic rat brain using Iba-1-specific nanoparticle-enhanced magnetic resonance imaging. Journal of Cerebral Blood Flow and Metabolism, 40(1_suppl), S117–S133. https://doi.org/10.1177/0271678X20953913.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Ding, L., Xu, X., Li, C., Wang, Y., Xia, X., & Zheng, J. (2021). Glutaminase in microglia: A novel regulator of neuroinflammation. Brain, Behavior, and Immunity, 92, 139–156. https://doi.org/10.1016/j.bbi.2020.11.038.

    Article  PubMed  CAS  Google Scholar 

  27. Li, T., Zhao, J., Xie, W., Yuan, W., Guo, J., Pang, S., et al. (2021). Specific depletion of resident microglia in the early stage of stroke reduces cerebral ischemic damage. Journal of Neuroinflammation, 18(1), 81. https://doi.org/10.1186/s12974-021-02127-w.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lu, Y., Li, C., Chen, Q., Liu, P., Guo, Q., Zhang, Y., et al. (2019). Microthrombus-targeting micelles for neurovascular remodeling and enhanced microcirculatory perfusion in acute ischemic stroke. Advanced Materials, 31(21), e1808361. https://doi.org/10.1002/adma.201808361.

    Article  PubMed  CAS  Google Scholar 

  29. Wang, D., Liu, F., Zhu, L., Lin, P., Han, F., Wang, X., et al. (2020). FGF21 alleviates neuroinflammation following ischemic stroke by modulating the temporal and spatial dynamics of microglia/macrophages. Journal of Neuroinflammation, 17(1), 257. https://doi.org/10.1186/s12974-020-01921-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Liu, Z., Ran, Y., Qie, S., Gong, W., Gao, F., Ding, Z., et al. (2019). Melatonin protects against ischemic stroke by modulating microglia/macrophage polarization toward anti-inflammatory phenotype through STAT3 pathway. CNS Neuroscience & Therapeutics, 25(12), 1353–1362. https://doi.org/10.1111/cns.13261.

    Article  CAS  Google Scholar 

  31. Jian, Z., Liu, R., Zhu, X., Smerin, D., Zhong, Y., Gu, L., et al. (2019). The involvement and therapy target of immune cells after ischemic stroke. Frontiers in Immunology, 10, 2167. https://doi.org/10.3389/fimmu.2019.02167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Frieler, R., Meng, H., Duan, S., Berger, S., Schütz, G., He, Y., et al. (2011). Myeloid-specific deletion of the mineralocorticoid receptor reduces infarct volume and alters inflammation during cerebral ischemia. Stroke, 42(1), 179–185. https://doi.org/10.1161/STROKEAHA.110.598441.

    Article  PubMed  Google Scholar 

  33. Cho, I., Hong, J., Suh, E., Kim, J., Lee, H., Lee, J., et al. (2008). Role of microglial IKKbeta in kainic acid-induced hippocampal neuronal cell death. Brain, 131(Pt 11), 3019–3033. https://doi.org/10.1093/brain/awn230.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang-Gandhi, C., & Drew, P. (2007). Liver X receptor and retinoid X receptor agonists inhibit inflammatory responses of microglia and astrocytes. Journal of Neuroimmunology, 183(1–2), 50–59. https://doi.org/10.1016/j.jneuroim.2006.11.007.

    Article  PubMed  CAS  Google Scholar 

  35. Zhu, Q., Tang, T., Liu, H., Sun, Y., Wang, X., Liu, Q., et al. (2020). pterostilbene attenuates cocultured BV-2 microglial inflammation-mediated SH-SY5Y neuronal oxidative injury via SIRT-1 signalling. Oxidative Medicine and Cellular Longevity, 2020, 3986348. https://doi.org/10.1155/2020/3986348.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Petroff, O. (2002). GABA and glutamate in the human brain. The Neuroscientist, 8(6), 562–573. https://doi.org/10.1177/1073858402238515.

    Article  PubMed  CAS  Google Scholar 

  37. Lee, W., Ham, S., Yoo, H., Hwang, J., Yoo, T., Paek, K., et al. (2018). Activation of PPARδ attenuates neurotoxicity by inhibiting lipopolysaccharide-triggered glutamate release in BV-2 microglial cells. Journal of Cellular Biochemistry, 119(7), 5609–5619. https://doi.org/10.1002/jcb.26732.

    Article  PubMed  CAS  Google Scholar 

  38. Sweeney, M., Zhao, Z., Montagne, A., Nelson, A., & Zlokovic, B. (2019). Blood-brain barrier: From physiology to disease and back. Physiological Reviews, 99(1), 21–78. https://doi.org/10.1152/physrev.00050.2017.

    Article  PubMed  CAS  Google Scholar 

  39. Chaturvedi, M., & Kaczmarek, L. (2014). Mmp-9 inhibition: A therapeutic strategy in ischemic stroke. Molecular Neurobiology, 49(1), 563–573. https://doi.org/10.1007/s12035-013-8538-z.

    Article  PubMed  CAS  Google Scholar 

  40. Chen, A., Fang, Z., Chen, X., Yang, S., Zhou, Y., Mao, L., et al. (2019). Microglia-derived TNF-α mediates endothelial necroptosis aggravating blood brain-barrier disruption after ischemic stroke. Cell Death & Disease, 10(7), 487. https://doi.org/10.1038/s41419-019-1716-9.

    Article  CAS  Google Scholar 

  41. Yang, Y., Salayandia, V., Thompson, J., Yang, L., Estrada, E., & Yang, Y. (2015). Attenuation of acute stroke injury in rat brain by minocycline promotes blood-brain barrier remodeling and alternative microglia/macrophage activation during recovery. Journal of Neuroinflammation, 12, 26. https://doi.org/10.1186/s12974-015-0245-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Cui, J., Chen, S., Zhang, C., Meng, F., Wu, W., Hu, R., et al. (2012). Inhibition of MMP-9 by a selective gelatinase inhibitor protects neurovasculature from embolic focal cerebral ischemia. Molecular Neurodegeneration, 7, 21. https://doi.org/10.1186/1750-1326-7-21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (81971093, 81725003, 31900810, 81900227), Science and Technology Commission of Shanghai Municipal (21ZR1439000), and Innovative Research Team of High-Level Local Universities in Shanghai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Hua Zhang.

Ethics declarations

Ethics Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with humans performed by any of the authors.

Conflict of Interest

The authors declare no competing interest.

Additional information

Associate Editor Junjie Xiao oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1444 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, S., Chen, YL., Du, LJ. et al. Macrophage Nuclear Receptor Corepressor 1 Deficiency Protects Against Ischemic Stroke in Mice. J. of Cardiovasc. Trans. Res. 15, 816–827 (2022). https://doi.org/10.1007/s12265-021-10187-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-021-10187-9

Keywords

Navigation